Skip to main content

Significant Siberian Vegetation Change is Inevitably Brought on by the Changing Climate

  • Chapter
  • First Online:
Novel Methods for Monitoring and Managing Land and Water Resources in Siberia

Part of the book series: Springer Water ((SPWA))

Abstract

The redistribution of terrestrial ecosystems and individual species is predicted to be profound under Global Climate Model simulations. We modeled the progression of potential vegetation and forest types in Siberia by the end of the twenty-first century by coupling large-scale bioclimatic models of vegetation zones and major conifer species with climatic variables and permafrost using the B1 and A2 Hadley Centre HadCM3 climate change scenarios. In the projected warmer and dryer climate, Siberian taiga forests are predicted to dramatically decrease and shift to the northeast, and forest–steppe, steppe, and novel temperate broadleaf forests are predicted to dominate most of Siberia by 2090. The permafrost should not retreat sufficiently to provide favorable habitats for dark (Pinus sibiric, Abies sibirica, and Picea obovata) taiga, and the permafrost-tolerant L. dahurica taiga should remain the dominant forest type in many current permafrost-lain areas. Water stress and fire-tolerant tree species (Pinus sylvestris and Larix spp.) should have an increased advantage over moisture-loving tree species (P. sibirica, A. sibirica, and P. obovata) in a new climate. Accumulated surface fuel loads due to increased tree mortality from drought, insects, and other factors, especially at the southern forest border and in the Siberian interior (Yakutia), together with an increase in severe fire weather, should also lead to increases in large, high-severity fires that are expected to facilitate vegetation progression toward a new equilibrium with the climate. Adaptation of the forest types and tree species to climate change in the south may be based on the genetic means of individual species and human willingness to aid migration, perhaps by seeding. Additionally, useful and viable crops could be established in agricultural lands instead of failing forests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaimov AP, Zyryanova OA, Prokushkin SG (2002) Long-term investigations of larch forests in the cryolithic zone of Siberia: brief history, recent results and possible changes under global warming. Eurasian J For Res 5–2:95–106

    Google Scholar 

  • Bazhenova OI, Martyanova GN (2003) Evaluation of geocryological conditions in subarid regions of Siberia in current climate warming (Oцeнкa измeнeний гeoкpиoлoгичecкиx ycлoвий cyбapидныx paйoнoв Cибиpи пpи coвpeмeннoм пoтeплeнии климaтa). Geogr Nat Resour 4:51–58 (in Russian)

    Google Scholar 

  • Box EO (1981) Macroclimate and plant forms: an introduction to predictive modeling in phytogeography. Junk, The Hague 258 p

    Book  Google Scholar 

  • Budyko MI (1974) Climate and life. Academic Press, New York 508 p

    Google Scholar 

  • Dokuchaev VV (1899) On studies of natural zones: horizontal and vertical soil zones (К yчeнию o зoнax пpиpoды: гopизoнтaльныe и вepтикaльныe пoчвeнныe зoны). The City Authorities Printing House, Sankt Petersburg, 28 p (in Russian)

    Google Scholar 

  • Dostavalov BN, Kudryavtsev VA (1967) Basic permafrost science (Oбщee мepзлoтoвeдeниe0. Moscow University Press, Moscow 404 p

    Google Scholar 

  • Gerasimchuk IV (2011) Adaptation actions: observed and forecasted climate change impacts on population, economy and ecosystem services. Chapter 6. In: Assessment report. Climate change and its impact on ecosystems, population and economy of the Russian portion of the Altai-Sayan ecoregion. WWF Russia ,Moscow, pp 94–131

    Google Scholar 

  • Gruza GV, Rankova EY (2004) Climate change detection: state, variability and climate extremes (Oбнapyжeниe измeнeний климaтa: cocтoяниe, измeнчивocть и экcтpeмaльнocть климaтa). Russ J Met Hydrol 4:50–66

    Google Scholar 

  • Hogg EH (1997) Temporal scaling of moisture and the forest-grassland boundary in western Canada. Agric Forest Meteorol 84:115–122

    Article  Google Scholar 

  • Hutchinson MF (2000) ANUSPLIN Version 4.1 user’s guide’. (Canberra: Australian National University, Centre for Resource and Environmental Studies), version 4.4 at: http://fennerschool.anu.edu.au/files/anusplin44.pdf. Accessed 20 Jan 2015

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M et al (eds) Working group 1 contribution to the IPCC third assessment report, URL: http://www.ipcc.ch. Accessed 20 Jan 2015

  • IPCC (2013) Climate change 2013: the physical science basis. URL: http://www.ipcc.ch/report/ar5/wg1/. Accessed 20 Jan 2015

  • Isachenko AG, Shlyapnikov AA, Robozertseva OD, Filipetskaya AZ (eds) (1988) The landscape map of the USSR (Лaндшaфтнaя кapтa CCCP). General Ministry of Geodesy and Cartography of the USSR, Moscow, 4 plates. M 1:4000000

    Google Scholar 

  • Isaev AS (1990) Map “Forests of the USSR” (Кapтa лecoв CCCP). M 1:2500000. ed. Isaev A.S

    Google Scholar 

  • Ivanov NN (1954) On evaporativity calculation (Oб oпpeдeлeнии вeличин иcпapяeмocти). All-Union Geogr Soc Bull 86(2):189–196

    Google Scholar 

  • Izrael YuA, Sirotenko OD (2003) Modeling on climate change impacts on the agriculture productivity of Russia (Moдeлиpoвaниe влияния измeнeния климaтa нa пpoдyктивнocть ceльcкoгo xoзяйcтвa Poccии). Russ J Meteorol Hydrol 6:5–17

    Google Scholar 

  • Kharuk VI, Dvinskaya ML, Ranson KG, Im ST (2005) Invasion of evergreen conifers into the larch dominance zone and climate trends (Пpoникнoвeниe вeчнoзeлeныx xвoйныx дepeвьeв в зoнy дoминиpoвaния лиcтвeнницы и климaтичecкиe тpeнды). Russian J Ecol 3:186–192 (in Russian)

    Google Scholar 

  • Kirilenko AP, Solomon AM (1998) Modeling dynamic vegetation response to rapid climate change using bioclimatic classification. Climatic Change 38(1):15–49

    Google Scholar 

  • Kukavskaya EA, Soja AJ, Petkov AP, Ponomarev EI, Ivanova GA, Conard SG (2013) Fire emissions estimates in Siberia: evaluation of uncertainties in area burned, land cover, and fuel consumption. Can J For Res 43(5):493–506

    Article  CAS  Google Scholar 

  • Lawrence DM, Slater AG (2005) A projection of severe near-surface permafrost degradation during the 21st century. Geophys Res Lett 32:L 24401

    Google Scholar 

  • Malevsky-Malevich SP, Molkentin EK, Nadyozhina ED, Shklyarevich OB (2001) Numerical simulation of permafrost parameters distribution. Cold Reg Sci Tech 32:1–11

    Article  Google Scholar 

  • Maximov TC (2007) Carbon exchange in the larch forest of the Yakutian sector of the cryolithozone (Кpyгoвopoт yглepoдa в лиcтвeнничныx лecax якyтcкoгo ceктopa кpиoлитoзoны). Diss Thesis, Inst for Biology Problems of the cryolithozone, Yakutsk

    Google Scholar 

  • Monserud RA, Leemans R (1992) Comparing global vegetation maps with the kappa-statistic. Ecol Model 62:275–293

    Article  Google Scholar 

  • Nazimova DI, Andreeva NM, Polikarpov NP, Sofronov MA (2006) A concept of the forest zone as a structural unit of biogeocenotic cover (Кoнцeпция лecopacтитeльнoй зoны кaк cтpyктypнoй чacти биoгeoцeнoтичecкoгo пoкpoвa). Russian J Forest Sci 1:1–19 (in Russian)

    Google Scholar 

  • Peng C (2000) From static biogeographical model to dynamic global vegetation model: a global perspective on modeling vegetation dynamics. Ecol Model 135:33–54

    Google Scholar 

  • Pleshikov FI (ed) (2002) Forest ecosystems of the Yenisei meridian (Лecныe экocиcтeмы Eниceйcкoгo мepидиaнa). Publishing House of SB RAS, Novosibirsk, p 356

    Google Scholar 

  • Polikarpov NP, Tchebakova NM, Nazimova DI (1986) Climate and mountain forests of southern Siberia (Климaт и гopныe лeca Южнoй Cибиpи). Nauka, Novosibirsk, 225 p (in Russian)

    Google Scholar 

  • Polikarpov NP, Andreeva NM, Nazimova DI, Sirotinina AV, Sofronov MA (1998) Formation composition of the forest zones in Siberia as a reflection of forest-forming tree species interrelations (Фopмaциoнный cocтaв лecныx зoн Cибиpи кaк oтpaжeниe взaимoдeйcтвия лecooбpaзoвaтeлeй). Russian J For Sci 5:3–11 (in Russian)

    Google Scholar 

  • Ponomarev VI, Kaplunenko DD, Krokhin VV (2005) Tendencies of climate change in the second half of the XX century in northeastern Asia, Alaska, and the Pacific Teндeнции измeнeний климaтa вo втopoй пoлoвинe XX вeкa в Ceвepo-Bocтoчнoй Aзии, нa Aляcкe и ceвepo-зaпaдe Tиxoгo oкeaнa). Russ J Met Hydrol 2:15–26 (in Russian)

    Google Scholar 

  • Popov PP (1980) European and Siberian spruce (Eль eвpoпeйcкaя и cибиpcкaя). Nauka, Novosibirsk, 230 p (in Russian)

    Google Scholar 

  • Pozdnyakov LK (1993) Forest on permafrost (Лec нa вeчнoй мepзлoтe). Nauka, Novosibirsk, 192 p (in Russian)

    Google Scholar 

  • Prentice IC, Cramer W, Harrison SP, Leemans R, Monserid RA, Solomon AM (1992) Global biome model: precting global vegetation patters from plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134

    Article  Google Scholar 

  • Rehfeldt GE, Tchebakova NM, Barnhardt LK (1999) Efficacy of climate transfer functions: introduction of Eurasian populations of Larix into Alberta. Can J For Res 29:1660–1668

    Article  Google Scholar 

  • Rehfeldt GE, Tchebakova NM, Parfenova EI et al (2002) Intraspecific responses to climate in Pinus sylvestris. Glob Change Biol 8:912–929

    Article  Google Scholar 

  • Shugart HH, Leemans R, Bonan GB (1991) A systems analysis of the global boreal forest. Cambridge University Press, New York, p 565

    Google Scholar 

  • Shumilova LV (1962) Botanical geography of Siberia (Бoтaничecкaя гeoгpaфия Cибиpи). Tomsk University Publ, Tomsk (in Russian)

    Google Scholar 

  • Shvidenko AZ, Shchepashchenko DG, Vaganov EA et al (2011) Impact of wildfire in Russia between 1998–2010 on ecosystems and the global carbon budget. Dokl Earth Sci 441(4):544–548

    Google Scholar 

  • Sirotenko OD, Gruza GV, Rankova EYa, Abashina EV, Pavlova VN (2007) Contemporary climate change of warmth, moisture and productivity of the agrisphere of Russia (Coвpeмeнныe климaтичecкиe измeнeния тeплooбecпeчeннocти, yвлaжнeннocти и пpoдyктивнocти aгpocфepы Poccии). Russ J Meteorol Hydrol 8:90–103 (in Russian)

    Google Scholar 

  • Soja AJ, Tchebakova NM, French NF, Flannigan MD, Shugart HH, Stocks BJ, Sukhinin Ai, Parfenova EI, Chapin III FS, Stackhouse Jr PW (2007) Climate-induced boreal forest change: predictions versus current observations. Glob Planet Change Special NEESPI Issue, 56 (3–4): 274–296

    Google Scholar 

  • Sokolov SY, Svyazeva OA, Kubli BA (1977) Tree and shrub ranges of the USSR (Apeaлы дepeвьeв и кycтapникoв CCCP). Nauka, Leningrad, 164 p (in Russian)

    Google Scholar 

  • Stephenson N (1998) Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. J Biogeogr 25(5):855–870

    Article  Google Scholar 

  • Tchebakova NM, Parfenova EI (2006) Prediction of forest shifts under climate change at the end of the 20th century in Central Siberia (Пpoгнoз пpoдвижeния гpaниц лeca пpи измeнeнии климaтa к кoнцy 20 вeкa в Cpeднeй Cибиpи(Пpoгнoз пpoдвижeния гpaниц лeca пpи измeнeнии климaтa к кoнцy 20 вeкa в Cpeднeй Cибиpи). Comput Tech 11 part 3: 77–86 (in Russian)

    Google Scholar 

  • Tchebakova NM, Parfenova E (2012) The 21st century climate change effects on the forests and primary conifers in central Siberia. Bosque. doi:10.4067/S0717-92002012000300004

    Google Scholar 

  • Tchebakova NM, Parfenova E (2013) Potential land cover change in Siberia predicted in Siberian bioclimatic model (pp 225–231). In: Groisman P, Gutman G (eds) Regional environmental changes in Siberia and their global consequences. Springer, Berlin, http://www.springer.com/environment/global+change+-+climate+change/book/978-94-007-4568-1. Accessed 20 Jan 2015

  • Tchebakova NM, Rehfeldt GE, Parfenova EI (2003) Distribution of vegetation zones and populations of Larix sibirica and Pinus sylvestris in central Siberia under climate warming (Пepepacпpeдeлeниe pacтитeльныx зoн и пoпyляций лиcтвeнницы cибиpcкoй и cocны oбыкнoвeннoй в Cpeднeй Cибиpи пpи пoтeплeнии климaтa). Contemp Probl Ecol 6:677–686 (in Russian)

    Google Scholar 

  • Tchebakova NM, Parfenova EI, Soja AJ (2009) Effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate. Environ Res Lett 4. doi:10.1088/1748-9326/4/4/045013

    Google Scholar 

  • Tchebakova NM, Rehfeldt GE, Parfenova EI (2010) From vegetation zones to climatypes: effects of climate warming on Siberian ecosystems. In: Osawa A, Zyryanova OA, Matsuura Y, Kajimoto T, Wein RW (eds) Permafrost ecosystems. Siberian larch forests. Springer, Dordrecht-Heidelberg-London-New York (Chapter 22) pp 427–447

    Google Scholar 

  • Tchebakova NM, Parfenova EI, Soja AJ (2011) Climate change and climate-induced hot spots in forest shifts in central Siberia at the turn of the 21st century. Regional environmental change. doi:10.1007/s10113-011-0210-4

    Google Scholar 

  • Tchebakova et al (2016) Evaluating the agroclimatic potential of central siberia. In: L. Mueller et al. (eds) Novel methods for monitoring and managing land and water resources in Siberia. Springer, Cham, pp 287–305 (Chapter 11 of this book)

    Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38(1):55–94

    Article  Google Scholar 

  • Velichko AA, Nechaev VP (1992) Evaluation of the permafrost zone dynamics in Northern Eurasia under global climate warming. Trans Russian Acad Sci Geogr Ser 324:667–671 (in Russian)

    Google Scholar 

  • Vygodskaya NN, Groisman PY, Tchebakova NM, Kurbatova JA, Panfyorov O, Parfenova EI, Sogachev AF (2007) Ecosystems and climate interactions in the boreal zone of northern Eurasia. Environ Res Lett 2 (045033)

    Google Scholar 

  • Walter H (1985) Vegetation on the earth and ecological systems of the geo-biosphere. Third English edition. Springer, Berlin/Heidelberg/New York/Tokyo, 318 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezhda M. Tchebakova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tchebakova, N.M., Parfenova, E.I., Soja, A.J. (2016). Significant Siberian Vegetation Change is Inevitably Brought on by the Changing Climate. In: Mueller, L., Sheudshen, A., Eulenstein, F. (eds) Novel Methods for Monitoring and Managing Land and Water Resources in Siberia. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-319-24409-9_10

Download citation

Publish with us

Policies and ethics