Skip to main content

Photonic Jets Formation by Non Spherical Axially and Spatially Asymmetric 3D Dielectric Particles

  • Chapter
  • First Online:
Diffractive Optics and Nanophotonics

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

Abstract

In this Chapter we address a fundamental question: is a spherical-aided shape of dielectric particle to form a photonic jet unique or the spherical shape of particle may be extended to other form? With the aim to obtain subwavelength focusing, an alternative mechanism (in contrast to spherical-aided particles) to produce photonic jets by using 3D and 2D dielectric cuboids are discussed. The principle possibility of generation and management of photonic jets parameters (including 3D) by choosing the particle of 3D arbitrary shape free of axial spatial symmetry are shown for the first time. Also for the first time the possibility of photonic jet formation in the interaction of a plane wave front with a particle located on a reflecting substrate in the “reflection” mode (flat focusing mirror) are offered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is interesting to note that the term “nanojet” now is used, for example, also in the problem of laser pulse impact to locally melt surface. See: Valev et al. [70].

  2. 2.

    Chang and Pan [71].

  3. 3.

    It is interesting to note that the optimization of spherical particle shape runs towards a mixture with a Fresnel-type lens, described in Chap. 1. See: Paganini et al. [72]

  4. 4.

    A breakthrough in far-field sub-wavelength imaging with white light source was reported in Wang et al. [50]. The idea was based on overcoming the diffraction limit by using the ordinary SiO2 microspheres as superlenses which forms a photonic nanojet. Later [73] it is shown that only evanescent waves, which carry the high frequency spatial sub-wavelength information, are responsible for the formation of near field image. It is also demonstrated analytically that while the evanescent waves improve the resolution of the real image, the remarkable imaging performance is due to nanoscope’s sub-wavelength near field focusing size.

  5. 5.

    Interestingly, that the similar jets from cuboid based dielectric objects, but fabricated of silica with refractive index n = 1.46 on a substrate were obtained at optical frequencie: Measurement of photonic nanojet generated by square-profile microstep // Proc. SPIE 9448: Optical Technologies in Biophysics and Medicine XVI; Laser Physics and Photonics XVI; and Computational Biophysics, 94482C (March 19, 2015).

  6. 6.

    Hou et al. [74].

References

  1. Born, M., & Wolf, E. (1999). Principles of optics (7th ed.). New York: Cambridge University Press.

    Book  Google Scholar 

  2. van de Hulst, H. C. (1957). Light scattering by small particles (p. 470). New York: Courier Dover Publications.

    Google Scholar 

  3. Chen, Z., Taflove, A., & Backman, V. (2004). Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique. Optics Express, 12(7), 1214–1220.

    Article  ADS  Google Scholar 

  4. Li, X., Chen, Z., Taflove, A., & Backman, V. (2005). Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets. Optics Express, 13, 526.

    Article  ADS  Google Scholar 

  5. Heifetz, A., Kong, S.-C., Sahakian, A. V., Taflove, A., & Backman, V. (2009). Photonic nanojets. Journal of Computational Theoretical Nanoscience, 6, 1979.

    Article  Google Scholar 

  6. Merlin, R. (2007). Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing. Science, 317, 927–929.

    Google Scholar 

  7. Guo, H., Han, Y., Weng, X., Zhao, Y., Sui, G., Wang, Y., & Zhuang, S. (2013). Near-field focusing of the dielectric microsphere with wavelength scale radius. Optics Express, 21(2), 2434–2443.

    Article  ADS  Google Scholar 

  8. Lecler, S., Takakura, Y., & Meyrueis, P. (2005). Properties of a three-dimensional photonic jet. Optics Letters, 30(19), 2641–2643.

    Google Scholar 

  9. Ku, Y., Kuang, C., Hao, X., Li, H., & Liu, X. (2013). Parameter optimization for photonic nanojet of dielectric microsphere. Optoelectronics Letters, 9(2), 153–156.

    Google Scholar 

  10. Devilez, A., Stout, B., Bonod, N., & Popov, E. (2008). Spectral analysis of three-dimensional photonic jets. Optics Express, 16(18), 14200–14212.

    Article  ADS  Google Scholar 

  11. Mollin, R. A. (1995). Quadrics. Boca Raton, FL: CRC Press.

    Google Scholar 

  12. Jalalia, T., & Erni, D. (2014). Highly confined photonic nanojet from elliptical particles. Journal of Modern Optics, 61(13), 1069–1076.

    Article  ADS  Google Scholar 

  13. Liu, C. (2013). Ultra-elongated photonic nanojets generated by a graded-index microellipsoid. Progress In Electromagnetics Research Letters, 37, 153–165.

    Article  Google Scholar 

  14. Geints, Y. E., Zemlyanov, A. A., & Panina, E. K. (2011). Photonic nanojet calculations in layered radially inhomogeneous micrometersized spherical particles. Journal of the Optical Society of America B, 28, 1825.

    Article  Google Scholar 

  15. Liu, C.-Y. (2014). Photonic nanojet shaping of dielectric non-spherical microparticles. Physica E, 64, 23–28.

    Article  ADS  Google Scholar 

  16. Devilez, A., Bonod, N., Wenger, J., Gérard, D., Stout, B., Rigneault, H., & Popov, E. (2009). Three-dimensional subwavelength confinement of light with dielectric microspheres. Optics Express, 17(4), 2089–2094.

    Article  ADS  Google Scholar 

  17. Kong, S.-C., Sahakian, A., Heifetz, A., Taflove, A., & Backman, V. (2008). Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets. Applied Physics Letters, 92, 211102.

    Article  ADS  Google Scholar 

  18. Zhao, L., & Ong, C. K. (2009). Direct observation of photonic jets and corresponding backscattering enhancement at microwave frequencies. Journal of Applied Physics, 105, 123512.

    Article  ADS  Google Scholar 

  19. Ju, D., Pei, H., Jiang, Y., & Sun, X. (2013). Controllable and enhanced nanojet effects excited by surface plasmon polariton. Applied Physics Letters, 102, 171109.

    Article  ADS  Google Scholar 

  20. Khaleque, A., & Li, Z. (2014). Tailoring the properties of photonic nanojets by changing the material and geometry of the concentrator. Progress In Electromagnetics Research Letters, 48, 7–13.

    Article  Google Scholar 

  21. Kim, M. S. et al. (2011). Engineering photonic nanojets. OPTICS EXPRESS, 19(11), 10206.

    Google Scholar 

  22. Rahman, B. M. A., & Agrawal, A. (2013). Finite element modeling methods for photonics (p. 268). London: Artech House.

    MATH  Google Scholar 

  23. Clemens, M., & Weiland, T. (2001). Discrete electromagnetism with the finite integration technique. Progress In Electromagnetics Research, PIER, 32, 65–87.

    Article  Google Scholar 

  24. Weiland, Thomas. (2003). Computational electromagnetics: Finite integration method and discrete electromagnetism. Lecture Notes in Computational Science and Engineering, 28, 183–198.

    Article  MathSciNet  MATH  Google Scholar 

  25. Pacheco-Pena, V., Beruete, M., Minin, I. V., & Minin, O. V. (2014). Terajets produced by 3D dielectric cuboids. Applied Physics Letters, 105, 084102.

    Article  ADS  Google Scholar 

  26. Pacheco-Peña, V., Beruete, M., Minin, I. V., Minin, O. V. (2015). 3D dielectric cuboids: an alternative for high resolution terajets at THz frequencies. Proceedings EuCAP, accepted.

    Google Scholar 

  27. Staffaroni, M., Conway, J., Vedantam, S., Tang, J., & Yablonovitch, E. (2012). Circuit analysis in metal-optics. Photonics Nanostructures - Fundamentals Applications, 10, 166.

    Article  Google Scholar 

  28. Minin, I. V., & Minin, O. V. (2014). Experimental verification 3D subwavelength resolution beyond the diffraction limit with zone plate in millimeter wave. Microwave and Optical Technology Letters, 56(10), 2436–2439.

    Article  Google Scholar 

  29. Minin, O. V., & Minin, I. V. (2004). Diffractional optics of millimeter waves. Boston: IOP Publisher.

    Book  MATH  Google Scholar 

  30. Zhao, L., & Ong, C. K. Direct observation of photonic jets and corresponding backscattering enhancement at microwave frequencies. http://arxiv.org/ftp/arxiv/papers/0903/0903.1693.pdf

  31. Heifetz, A., Huang, K., Sahakian, A. V., Li, X., Taflove, A., & Backman, V. (2006). Experimental confirmation of backscattering enhancement induced by a photonic jet. Applied Physics Letters, 89(22), 221118.

    Google Scholar 

  32. Pacheco-Peña, V., Beruete, M., Minin, I. V., & Minin, O. V. (2015). Multifrequency focusing and wide angular scanning of terajets. Optics Letters, 40(2), 245–248.

    Article  ADS  Google Scholar 

  33. Liu, Y., Wang, B., & Ding, Z. (2011). Influence of incident light polarization on photonic nanojet. Chinese Optics Letters, 9(7), 072901.

    Article  ADS  Google Scholar 

  34. Kong, S.-C., Taflove, A., & Backman, V. (2009). Quasi one-dimensional light beam generated by a graded-index microsphere. Optics Express, 17, 3722–3725.

    Article  ADS  Google Scholar 

  35. Bamgartl, J., Mazilu, M., & Dholakia, K. (2008). Optically mediated particle clearing using Airy wavepackets. Nature Photonics, 2, 675–678.

    Article  ADS  Google Scholar 

  36. Polynkin, P., Koselik, N., Moloney, J. W., Siviloglou, G. A., & Christodoulides, D. N. (2009). Curved plasma channel generation using ultraintense Airy beams. Science, 324, 229–232.

    Article  ADS  Google Scholar 

  37. Minin, I. V., Minin, O. V., & Geints, Y. (2015). Localized EM and photonic jets from non-spherical and non-symmetrical dielectric mesoscale objects: Brief review. Annalen der Physik doi:10.1002/andp.201500132 (See also Minin, I. V., Minin, O. V., & Haritoshin, N. A. (2014). Potonic terajet formation by dielectric particles of non axial symmetry of the spatial form. Vestnik SGGA).

  38. Minin, I. V., Minin, O. V., & Haritoshin, N. A. (2014). Mirror photonic terajet formation. Vestnik SGGA.

    Google Scholar 

  39. Minin, I. V., & Minin, O. V. (2014). Photonics of isolated dielectric particles of arbitrary three-dimensional shape—a new direction in optical information technology. Vestnik NGU Series: Information Technology, 12(4), 69–70.

    ADS  MATH  Google Scholar 

  40. Minin, I., & Minin, O. (2015). Photonics of Mesoscale Nonspherical and Non Axysimmetrical Dielectric Particles and Application to Cuboid-Chain with Air-gaps Waveguide Based on Periodic Terajet-Induced Modes (Invited). Proceedings of the 17th International Conference on Transparent Optical Networks, Budapest, paper We.D6.6.

    Google Scholar 

  41. Minin, I. V., Minin, O. V., Pacheco-Pena, V., & Beruete, M. (2015). Localized photonic jets from flat dielectric objects in the reflection mode. Optics Letters, 40(10), 2329–2332.

    Article  ADS  Google Scholar 

  42. Pacheco-Peña, V., Beruete, M., Navarro-Cía, M., Minin, I. V., & Minin, O. V. (2015). High resolution terajets using 3D dielectric cuboids. The 2015 IEEE AP-S Symposium on Antennas and Propagation and URSI CNC/USNC Joint Meeting, Vancouver, July 19–25, 2015 (accepted).

    Google Scholar 

  43. Terakawa, M., & Tanaka, Y. (2011). Dielectric microsphere mediated transfection using a femtosecond laser. Optics Letters, 36, 2877–2879.

    Article  ADS  Google Scholar 

  44. Zemlyanov, A. A., & Geints, Y. E. (2004). Intensity of optical field inside a weakly absorbing spherical particle irradiated by a femtosecond laser pulse. Optics Spectroscopy, 96, 298–304.

    Article  ADS  Google Scholar 

  45. Jipa, F., Dinescu, A., Filipescu, M., Anghel, I., Zamfirescu, M., & Dabu, R. (2014). Laser parallel nanofabrication by single femtosecond pulse near-field ablation using photoresist masks. Optics Express, 22(3), 3356–3361.

    Google Scholar 

  46. Shifrin, K. S., & Zolotov, I. G. (1994). Quasi-stationary scattering of electromagnetic pulses by spherical particles. Applied Optics, 33, 7798–7804.

    Article  ADS  Google Scholar 

  47. Mees, L., Gouesbet, G., & Greґhan, G. (2001). Interaction between femtosecond pulses and a spherical microcavity: Internal fields. Optics Communications, 199, 33–38.

    Article  ADS  Google Scholar 

  48. Kozlova, E. S., & Kotlyar, V. V. (2015). Simulation of the resonance focusing of picosecond and femtosecond pulses by use of a dielectric microcylinder. Computer Optics, 39(3), 319–3.

    Google Scholar 

  49. Abdurrochman, A., Lecler, S., Fontaine, J., Mermet, F., Meyrueis, P. et al. (2014). Photonic jet to improve the lateral resolution of laser etching. Proceedings of SPIE 9135, Laser Sources and Applications II, 913523. doi:10.1117/12.2052718

  50. Wang, Z., Guo, W., Li, L., Luk’yanchuk, B., Khan, A., Liu, Z., et al. (2011). Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nature Communications, 2, 218.

    Article  ADS  Google Scholar 

  51. Dantham, V. R., Bisht, P. B., & Namboodiri, C. K. R. (2011). Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere. Journal of Applied Physics, 109, 103103.

    Article  ADS  Google Scholar 

  52. Hutchens, T., Darafsheh, A., Fardad, A., Antoszyk, A., Ying, H., Astratov, V., & Fried, N. (2014). Detachable microsphere scalpel tips for potential use in ophthalmic surgery with the erbium:YAG laser. Journal of Biomedical Optics, 19, 018003.

    Article  ADS  Google Scholar 

  53. Allen, K., Darafsheh, A., Abolmaali, F., Mojaverian, N., Limberopoulos, N., Lupu, A., & Astratov, V. (2014). Microsphere-chain waveguides: Focusing and transport properties. Applied Physics Letters, 105, 021112.

    Article  ADS  Google Scholar 

  54. Hasan, M., & Simpson, J. (2013). Photonic nanojet-enhanced nanometer-scale germanium photodiode. Applied Optics, 52, 5420.

    Article  ADS  Google Scholar 

  55. Upputuri, P., Wen, Z., Wu, Z., & Pramanik, M. (2014). Super-resolution photoacoustic microscopy using photonic nanojets: A simulation study. Journal of Biomedical Optics, 19(11), 116003.

    Article  ADS  Google Scholar 

  56. Chen, Y., Xie, X., Li, L., Chen, G., Guo, L., & Lin, X. (2015). Improving field enhancement of 2D hollow tapered waveguides via dielectric microcylinder coupling. Journal of Physics D: Applied Physics, 48, 065103.

    Article  ADS  Google Scholar 

  57. Takakura, Y., Halaq, H., Lecler, S., Robert, S., & Sauviac, B. (2012). Single and dual photonic jets with tipped waveguides: An integral approach. IEEE Photonics Technology Letters, 24, 17.

    Article  Google Scholar 

  58. Neves, A. (2015). Photonic nanojets in optical tweezers. Journal of Quantitative Spectroscopy & Radiative Transfer, 162, 122–132.

    Article  ADS  Google Scholar 

  59. Ghenuche, P., De Torres, J., Ferrand, P., & Wenger, J. (2014). Multi-focus parallel detection of fluorescent molecules at picomolar concentration with photonic nanojets arrays. Applied Physics Letters, 105(13), 131102.

    Article  ADS  Google Scholar 

  60. Wang, F., Lai, H. S., Liu, L., Li, P., Yu, H., Liu, Z., et al. (2015). Super-resolution endoscopy for real-time wide-field imaging. Optics Express, 23(13), 16803.

    Article  ADS  Google Scholar 

  61. Liyanage, W. P. R., Wilson, J. S., Kinzel, E. C., Durant, B. K., & Nath, M. (2015). Fabrication of CdTe nanorod arrays over large area through patterned electrodeposition for efficient solar energy conversion. Solar Energy Materials & Solar Cells, 133, 260–267.

    Article  Google Scholar 

  62. Ghenuche, P., Torres, J., Ferrand, P., & Wenger, J. (2014). Multi-focus parallel detection of fluorescent molecules at picomolar concentration with photonic nanojets arrays. Applied Physics Letters, 105, 131102.

    Article  ADS  Google Scholar 

  63. Kim, J. H., & Park, J. S. (2015). Partial dark-field microscopy for investigating domain structures of double-layer microsphere film. Scientific Reports, 5, 10157. doi:10.1038/srep10157.

    Article  Google Scholar 

  64. Yang, H., & Gijs, M. A. M. (2013). Microtextured substrates and microparticles used as in situ lenses for on-chip immunofluorescence amplification. Analytical Chemistry, 85, 2064–2071.

    Article  Google Scholar 

  65. Du, C. L., Kasim, J., You, Y. M., Shi, D. N., & Shen, Z. X. (2011). Enhancement of Raman scattering by individual dielectric microspheres. Journal of Raman Spectroscopy, 42, 145–148.

    Article  ADS  Google Scholar 

  66. Minin, I. V., Minin, O. V., Pacheco-Peña, V., & Beruete, M. (2015). All-dielectric periodic terajet waveguide using an array of coupled cuboids. Applied Physics Letters, 106, 254102.

    Article  ADS  Google Scholar 

  67. Minin, I. V., & Minin, O.V., Patent of Russia 2014140028.

    Google Scholar 

  68. Minin, I. V., & Minin, O.V., Patents of Russia 2014150306, 2014142846, 153471.

    Google Scholar 

  69. Minin, I. V., & Minin, O.V., Patent of Russia 201415428.

    Google Scholar 

  70. Valev, V. K. et al. (2012). Plasmon-enhanced sub-wavelength laser ablation: Plasmonic nanojets. Advanced Materials, 24, OP29–OP35.

    Google Scholar 

  71. Chang, R. K., & Pan, Y.-L. (2008). Linear and non-linear spectroscopy of microparticles: Basic principles, new techniques and promising applications. Faraday Discuss, 137, 9–36.

    Article  ADS  Google Scholar 

  72. Paganini, A., Sargheini, S., Hiptmair, R., & Hafner, C. (2015). Shape optimization of microlenses. Optics Express, 23(10), 13099.

    Article  ADS  Google Scholar 

  73. Kiasat, Y., et al. (2013). Proceedings of the 4th International Conference on Metamaterials, Photonic Crystals and Plasmonics (pp. 242–243). 18–22 March, 2013, Sharjah, United Arab Emirates.

    Google Scholar 

  74. Hou, J., et al. (2015). Magnification and resolution of microlenses with different shapes. Micro & Nano Letters, 10(7), 1–4. doi:10.1049/mnl.2015.0082.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Minin .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Minin, I., Minin, O. (2016). Photonic Jets Formation by Non Spherical Axially and Spatially Asymmetric 3D Dielectric Particles. In: Diffractive Optics and Nanophotonics. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-24253-8_4

Download citation

Publish with us

Policies and ethics