Skip to main content

Introduction

  • Chapter
  • First Online:
Diffractive Optics and Nanophotonics

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 1487 Accesses

Abstract

The criterions of resolution based on classical theory are discussed briefly. The main definitions of focusing area are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The 3D intensity distribution of the actual image in optics is called the Point Spread Function of a lens.

  2. 2.

    The Rayleigh criterion is satisfied when the distance between the images of two closely spaced point sources is approximately equal to the width of the point-spread function. In contrast, the Sparrow resolution limit is defined as the distance between two point sources where the images no longer have a dip in brightness between the central peaks, but rather exhibit constant brightness across the region between the peaks and approximately equal to two-thirds (0.47 in contrast to 0.61) of the Rayleigh resolution limit.

  3. 3.

    Although terminology is not strict one can refer to nanooptics addressing more fundamental aspects and nanophotonics addressing more applied aspects, respectively (so nanooptics has emerged from the wider area of nanoscience).

References

  1. Abbe, E. (1873). Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. M. Schultze’s Archiv für mikroskopische Anatomie, 9, 413–468.

    Google Scholar 

  2. Abbe, E. (1880). Ueber die Grenzen der geometrischen Optik. Jenaische Zeitschrift für Naturwissenschaft. Sitzungsberichte, 14, 71–109.

    Google Scholar 

  3. Rayleigh, L. (1896). On the theory of optical images, with special reference to the microscope. Philosophical Magazine 54, 167.

    Article  MATH  Google Scholar 

  4. Airy, G. B. (1835). On the diffraction of an object-glass with circular aperture. Transactions of the Cambridge Philosophical Society, 5, 283–291 (1835).

    Google Scholar 

  5. Airy, G. B. (1841). On the diffraction of an annular aperture. Philosophical Magazine Third Series, 18(114), 1–10.

    Google Scholar 

  6. Goldsmith, P. F. (1998). Quasioptical Systems. New York: IEEE Press.

    Google Scholar 

  7. Minin, I. V., Minin. O. V. (2008). Basic principles of Fresnel antenna arrays. Lecture Notes Electrical Engineering (Vol. 19). Berlin: Springer.

    Google Scholar 

  8. Novotny, L. (2007). The history of near-field optics. In E. Wolf (Ed.), Progress in optics (vol. 50, chapter 5, pp. 137–184). Amsterdam: Elsevier.

    Google Scholar 

  9. Ohtsu, M. (ed.). (2013). Handbook of nano-optics and nanophotonics (1071 p). Berlin: Springer.

    Google Scholar 

  10. Minin, O. V., & Minin, I. V. (2004). Diffractional optics of millimeter waves. Boston: IOP Publisher.

    Book  MATH  Google Scholar 

  11. Pendry, J. B. (2000). Negative refraction makes a perfect lens. Physical Review Letters, 85, 3966–3969.

    Article  ADS  Google Scholar 

  12. Fang, N., Lee, H., Sun, C., & Zhang, X. (2005). Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534.

    Article  ADS  Google Scholar 

  13. Liu, Z., Lee, H., Xiong, Y., Sun, C., & Zhang, X. (2007). Optical hyperlens magnifying sub-diffraction-limited objects. Science, 315, 1686.

    Article  ADS  Google Scholar 

  14. Mansfield, S. M., & Kino, G. S. (1990). Solid immersion microscope. Applied Physics Letters, 57, 2615.

    Article  ADS  Google Scholar 

  15. Minin, I. V., Minin, O. V., Gagnon, N., Petosa, A. (2006). FDTD Analysis of a Flat Diffractive Optics with Sub-Reyleigh Limit Resolution in MM/THz Waveband. In Digest of the Joint 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics (p. 170). Shanghai, China, September 18–22, 2006.

    Google Scholar 

  16. Minin, I. V., & Minin, O. V. (2014). 3D diffractive lenses to overcome the 3D Abbe subwavelength diffraction limit. Chinese Optics Letters, 12, 060014.

    Article  ADS  Google Scholar 

  17. Heifetz, A., Kong, S.-C., Sahakian, A. V., Taflove, A., & Backman, V. (2009). Photonic nanojets. Journal of Computational and Theoretical Nanoscience, 6, 1979.

    Article  Google Scholar 

  18. Chen, Z., Taflove, A., & Backman, V. (2004). Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Optics Express, 12(7), 1214–1220.

    Article  ADS  Google Scholar 

  19. Pacheco-Pena, V., Beruete, M., Minin, I. V., & Minin, O. V. (2014). Terajets produced by 3D dielectric cuboids. Applied Physics Letters, 105, 084102.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Minin .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Minin, I., Minin, O. (2016). Introduction. In: Diffractive Optics and Nanophotonics. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-24253-8_1

Download citation

Publish with us

Policies and ethics