Skip to main content

Anomaly Detection for Data with Spatial Attributes

  • Chapter
  • First Online:
Unsupervised Learning Algorithms

Abstract

The problem of detecting spatially-coherent groups of data that exhibit anomalous behavior has started to attract attention due to applications across areas such as epidemic analysis and weather forecasting. Earlier efforts from the data mining community have largely focused on finding outliers, individual data objects that display deviant behavior. Such point-based methods are not easy to extend to find groups of data that exhibit anomalous behavior. Scan statistics are methods from the statistics community that have considered the problem of identifying regions where data objects exhibit a behavior that is atypical of the general dataset. The spatial scan statistic and methods that build upon it mostly adopt the framework of defining a character for regions (e.g., circular or elliptical) of objects and repeatedly sampling regions of such character followed by applying a statistical test for anomaly detection. In the past decade, there have been efforts from the statistics community to enhance efficiency of scan statistics as well as to enable discovery of arbitrarily shaped anomalous regions. On the other hand, the data mining community has started to look at determining anomalous regions that have behavior divergent from their neighborhood. In this chapter, we survey the space of techniques for detecting anomalous regions on spatial data from across the data mining and statistics communities while outlining connections to well-studied problems in clustering and image segmentation. We analyze the techniques systematically by categorizing them appropriately to provide a structured birds-eye view of the work on anomalous region detection; we hope that this would encourage better cross-pollination of ideas across communities to help advance the frontier in anomaly detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use the prefix general to differentiate these from spatial outlier detection methods, that we will see shortly.

  2. 2.

    An intuitive likelihood estimates the chances of generating the data points as against the expected probability, and aggregates it across the objects. Under the condition that the expected probability is the same for objects within and outside Z, any value of Z would yield the same likelihood.

  3. 3.

    http://en.wikipedia.org/wiki/Gini_coefficient.

References

  1. Ankerst, M., Breunig, M.M., Kriegel, H.-P., Sander, J.: Optics: ordering points to identify the clustering structure. In: ACM Sigmod Record, vol. 28, pp. 49–60. ACM, New York (1999)

    Google Scholar 

  2. Balachandran, V., Deepak, P., Khemani, D.: Interpretable and reconfigurable clustering of document datasets by deriving word-based rules. Knowl. Inf. Syst. 32(3), 475–503 (2012)

    Article  Google Scholar 

  3. Bonnet, N., Cutrona, J., Herbin, M.: A ‘no-threshold’ histogram-based image segmentation method. Pattern Recogn. 35(10), 2319–2322 (2002)

    Article  MATH  Google Scholar 

  4. Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: ACM Sigmod Record, vol. 29, pp. 93–104. ACM, New York (2000)

    Google Scholar 

  5. Celebi, M.E.: Partitional Clustering Algorithms. Springer, New York (2015)

    Book  MATH  Google Scholar 

  6. Chaudhary, A., Szalay, A.S., Moore, A.W.: Very fast outlier detection in large multidimensional data sets. In: DMKD (2002)

    Google Scholar 

  7. Chawla, S., Sun, P.: Slom: a new measure for local spatial outliers. Knowl. Inf. Syst. 9(4), 412–429 (2006)

    Article  Google Scholar 

  8. Deepak, P., Deshpande, P., Visweswariah, K., Telang, A.: System and method for clustering ensuring convexity in subspaces. Prior Art Database (IP.COM) (2013)

    Google Scholar 

  9. Duczmal, L., Assuncao, R.: A simulated annealing strategy for the detection of arbitrarily shaped spatial clusters. Comput. Stat. Data Anal. 45(2), 269–286 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, vol. 96, pp. 226–231 (1996)

    Google Scholar 

  11. Fan, J., Yau, D.K., Elmagarmid, A.K., Aref, W.G.: Automatic image segmentation by integrating color-edge extraction and seeded region growing. IEEE Trans. Image Process. 10(10), 1454–1466 (2001)

    Article  MATH  Google Scholar 

  12. Friedman, J.H., Fisher, N.I.: Bump hunting in high-dimensional data. Stat. Comput. 9(2), 123–143 (1999)

    Article  Google Scholar 

  13. Glaz, J., Pozdnyakov, V., Wallenstein, S.: Scan Statistics: Methods and Applications. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  14. Grady, L., Schwartz, E.L.: Isoperimetric graph partitioning for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 469–475 (2006)

    Article  Google Scholar 

  15. Guha, S., Rastogi, R., Shim, K.: Rock: a robust clustering algorithm for categorical attributes. In: Proceedings of the 15th International Conference on Data Engineering, 1999, pp. 512–521. IEEE, New York (1999)

    Google Scholar 

  16. Hawkins, D.M.: Identification of Outliers, vol. 11. Springer, New York (1980)

    Book  MATH  Google Scholar 

  17. He, Z., Xu, X., Deng, S.: Discovering cluster-based local outliers. Pattern Recogn. Lett. 24(9), 1641–1650 (2003)

    Article  MATH  Google Scholar 

  18. Jiang, M.-F., Tseng, S.-S., Su, C.-M.: Two-phase clustering process for outliers detection. Pattern Recogn. Lett. 22(6), 691–700 (2001)

    Article  MATH  Google Scholar 

  19. Knox, E.M., Ng, R.T.: Algorithms for mining distance based outliers in large datasets. In: Proceedings of the International Conference on Very Large Data Bases, pp. 392–403. Citeseer, New York (1998)

    Google Scholar 

  20. Kulldorff, M.: A spatial scan statistic. Commun. Stat. Theory Methods 26(6), 1481–1496 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kulldorff, M., Huang, L., Pickle, L., Duczmal, L.: An elliptic spatial scan statistic. Stat. Med 25(22), 3929–3943 (2006)

    Article  MathSciNet  Google Scholar 

  22. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, California, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  23. Mahoney, M.V., Chan, P.K., Arshad, M.H.: A machine learning approach to anomaly detection. Technical report, Tech. rep. CS–2003–06, Department of Computer Science, Florida Institute of Technology Melbourne (2003)

    Google Scholar 

  24. Neill, D.B., Moore, A.W., Cooper, G.F.: A bayesian spatial scan statistic. Adv. Neural Inf. Process. Syst. 18, 1003 (2006)

    Google Scholar 

  25. Patil, G., Taillie, C.: Upper level set scan statistic for detecting arbitrarily shaped hotspots. Environ. Ecol. Stat. 11(2), 183–197 (2004)

    Article  MathSciNet  Google Scholar 

  26. Portnoy L., Eskin E., Stolfo S.: Intrusion detection with unlabeled data using clustering. In Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA-2001). pp. 5–8 (2001)

    Google Scholar 

  27. Revol, C., Jourlin, M.: A new minimum variance region growing algorithm for image segmentation. Pattern Recogn. Lett. 18(3), 249–258 (1997)

    Article  Google Scholar 

  28. Schubert, E., Zimek, A., Kriegel, H.-P.: Local outlier detection reconsidered: a generalized view on locality with applications to spatial, video, and network outlier detection. Data Min. Knowl. Disc. 28(1), 190–237 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shaw, J.R.: Quickfill: an efficient flood fill algorithm. The Code Project (2004)

    Google Scholar 

  30. Shekhar, S., Lu, C.-T., Zhang, P.: Detecting graph-based spatial outliers: algorithms and applications (a summary of results). In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 371–376. ACM, New York (2001)

    Google Scholar 

  31. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  32. Tango, T., Takahashi, K.: A flexibly shaped spatial scan statistic for detecting clusters. Int. J. Health Geogr. 4(1), 11 (2005)

    Google Scholar 

  33. Telang, A., Deepak, P., Joshi, S., Deshpande, P., Rajendran, R.: Detecting localized homogeneous anomalies over spatio-temporal data. Data Min. Knowl. Disc. 28(5–6), 1480–1502 (2014)

    Article  MathSciNet  Google Scholar 

  34. Turnbull, B.W., Iwano, E.J., Burnett, W.S., Howe, H.L., Clark, L.C.: Monitoring for clusters of disease: application to leukemia incidence in upstate new york. Am. J. Epidemiol. 132(Suppl. 1), 136–143 (1990)

    Google Scholar 

  35. Yu, D., Sheikholeslami, G., Zhang, A.: Findout: finding outliers in very large datasets. Knowl. Inf. Syst. 4(4), 387–412 (2002)

    Article  Google Scholar 

  36. Zepeda-Mendoza, M.L., Resendis-Antonio, O.: Hierarchical agglomerative clustering. In: Encyclopedia of Systems Biology, pp. 886–887. Springer, Berlin (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Deepak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Deepak, P. (2016). Anomaly Detection for Data with Spatial Attributes. In: Celebi, M., Aydin, K. (eds) Unsupervised Learning Algorithms. Springer, Cham. https://doi.org/10.1007/978-3-319-24211-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24211-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24209-5

  • Online ISBN: 978-3-319-24211-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics