Skip to main content

Simulation for Pediatric Critical Care Medicine and Transport

  • Chapter
  • First Online:
Comprehensive Healthcare Simulation: Pediatrics

Abstract

The pediatric intensive care unit (PICU) environment is complex, and its smooth operation relies on highly trained healthcare providers. Simulation-based education, with its ability to educate healthcare teams in rare but high-stakes scenarios, has a critical role to play in the PICU. This includes specialized task training (such as resuscitation, intubation, and central line placement), team training, and coordination of multiple healthcare providers in very complex tasks such as cannulation for extracorporeal membrane oxygenation (ECMO).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berg RA, Sutton RM, Holubkov R, Nicholson CE, Dean JM, Harrison R, et al. Ratio of PICU versus ward cardiopulmonary resuscitation events is increasing. Crit Care Med. 2013;41(10):2292–7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hunt EA, Patel S, Vera K, Shaffner DH, Pronovost PJ. Survey of pediatric resident experiences with resuscitation training and attendance at actual cardiopulmonary arrests. Pediatr Crit Care Med. 2009;10(1):96–105.

    Article  PubMed  Google Scholar 

  3. Hunt EA, Vera K, Diener-West M, Haggerty JA, Nelson KL, Shaffner DH, et al. Delays and errors in cardiopulmonary resuscitation and defibrillation by pediatric residents during simulated cardiopulmonary arrests. Resuscitation. 2009;80(7):819–25.

    Article  PubMed  Google Scholar 

  4. White JR, Shugerman R, Brownlee C, Quan L. Performance of advanced resuscitation skills by pediatric housestaff. Arch Pediatr Adolesc Med. 1998;152(12):1232–5.

    Article  CAS  PubMed  Google Scholar 

  5. Roy KM, Miller MP, Schmidt K, Sagy M. Pediatric residents experience a significant decline in their response capabilities to simulated life-threatening events as their training frequency in cardiopulmonary resuscitation decreases. Pediatr Crit Care Med. 2011;12(3):e141–4

    Article  PubMed  Google Scholar 

  6. Weinstock PH, Kappus LJ, Garden A, Burns JP. Simulation at the point-of-care: reduced-cost, in situ training via a mobile cart. Pediatr Crit Care Med. 2009;10(2):176–81

    Article  PubMed  Google Scholar 

  7. Sharek PJ, Parast LM, Leong K, Coombs J, Earnest K, Sullivan J, et al. Effect of a rapid response team on hospital-wide mortality and code rates outside the ICU in a children’s hospital. JAMA. 2007;298(19):2267–74.

    Article  CAS  PubMed  Google Scholar 

  8. Grant EC, Marczinski CA, Menon K. Using pediatric advanced life support in pediatric residency training: does the curriculum need resuscitation? Pediatr Crit Care Med. 2007;8(5):433–9.

    Article  PubMed  Google Scholar 

  9. Wayne DB, Didwania A, Feinglass J, Fudala MJ, Barsuk JH, McGaghie WC. Simulation-based education improves quality of care during cardiac arrest team responses at an academic teaching hospital: a case-control study. Chest. 2008;133(1):56–61.

    Article  PubMed  Google Scholar 

  10. Hunt EA, Duval-Arnould JM, Nelson-McMillan KL, Bradshaw JH, Diener-West M, Perretta JS, et al. Pediatric resident resuscitation skills improve after “rapid cycle deliberate practice” training. Resuscitation. 2014;85(7):945–51.

    Article  PubMed  Google Scholar 

  11. Pye S, Kane J, Jones A. Parental presence during pediatric resuscitation: the use of simulation training for cardiac intensive care nurses. J Spec Pediatr Nurs. 2010;15(2):172–5.

    Article  PubMed  Google Scholar 

  12. Frengley RW, Weller JM, Torrie J, Dzendrowskyj P, Yee B, Paul AM, et al. The effect of a simulation-based training intervention on the performance of established critical care unit teams. Crit Care Med. 2011;39(12):2605–11.

    Article  PubMed  Google Scholar 

  13. Blackwood J, Duff JP, Nettel-Aguirre A, Djogovic D, Joynt C. Does teaching crisis resource management skills improve resuscitation performance in pediatric residents? Pediatr Crit Care Med. 2014;15(4):e168–74.

    Article  PubMed  Google Scholar 

  14. Cheng A, Hunt EA, Donoghue A, Nelson-McMillan K, Nishisaki A, Leflore J, et al. Examining pediatric resuscitation education using simulation and scripted debriefing: a multicenter randomized trial. JAMA Pediatr. 2013;167(6):528–36.

    Article  PubMed  Google Scholar 

  15. Tofil NM, Lee White M, Manzella B, McGill D, Zinkan L. Initiation of a pediatric mock code program at a children’s hospital. Med Teach. 2009;31(6):e241–7.

    Article  PubMed  Google Scholar 

  16. Wolfe H, Zebuhr C, Topjian AA, Nishisaki A, Niles DE, Meaney PA, et al. Interdisciplinary ICU cardiac arrest debriefing improves survival outcomes*. Crit Care Med. 2014;42(7):1688–95.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Issenberg SB, McGaghie WC, Petrusa ER, Lee Gordon D, Scalese RJ. Features and uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review. Med Teach. 2005;27(1):10–28.

    Article  PubMed  Google Scholar 

  18. Pilcher J, Goodall H, Jensen C, Huwe V, Jewell C, Reynolds R, et al. Special focus on simulation: educational strategies in the NICU: simulation-based learning: it’s not just for NRP. Neonatal Netw. 2012;31(5):281–7.

    Article  PubMed  Google Scholar 

  19. Rauen CA. Simulation as a teaching strategy for nursing education and orientation in cardiac surgery. Crit Care Nurse. 2004;24(3):46–51.

    PubMed  Google Scholar 

  20. Niles D, Sutton RM, Donoghue A, Kalsi MS, Roberts K, Boyle L, et al. “Rolling Refreshers”: a novel approach to maintain CPR psychomotor skill competence. Resuscitation. 2009;80(8):909–12.

    Article  PubMed  Google Scholar 

  21. Nishisaki A, Donoghue AJ, Colborn S, Watson C, Meyer A, Brown CA 3rd, et al. Effect of just-in-time simulation training on tracheal intubation procedure safety in the pediatric intensive care unit. Anesthesiology. 2010;113(1):214–23.

    Article  PubMed  Google Scholar 

  22. Sutton RM, Niles D, Meaney PA, Aplenc R, French B, Abella BS, et al. “Booster” training: evaluation of instructor-led bedside cardiopulmonary resuscitation skill training and automated corrective feedback to improve cardiopulmonary resuscitation compliance of Pediatric Basic Life Support providers during simulated cardiac arrest. Pediatr Crit Care Med. 2011;12(3):e116–21.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Scholtz AK, Monachino AM, Nishisaki A, Nadkarni VM, Lengetti E. Central venous catheter dress rehearsals: translating simulation training to patient care and outcomes. Simul Healthc. 2013;8(5):341–9.

    Article  PubMed  Google Scholar 

  24. Overly FL, Sudikoff SN, Shapiro MJ. High-fidelity medical simulation as an assessment tool for pediatric residents’ airway management skills. Pediatr Emerg Care. 2007;23(1):11–5.

    Article  PubMed  Google Scholar 

  25. Nishisaki A, Nguyen J, Colborn S, Watson C, Niles D, Hales R, et al. Evaluation of multidisciplinary simulation training on clinical performance and team behavior during tracheal intubation procedures in a pediatric intensive care unit. Pediatr Crit Care Med. 2011;12(4):406–14.

    Article  PubMed  Google Scholar 

  26. Kennedy CC, Cannon EK, Warner DO, Cook DA. Advanced airway management simulation training in medical education: a systematic review and meta-analysis. Crit Care Med. 2014;42(1):169–78.

    Article  PubMed  Google Scholar 

  27. Madenci AL, Solis CV, de Moya MA. Central venous access by trainees: a systematic review and meta-analysis of the use of simulation to improve success rate on patients. Simul Healthc. 2014;9(1):7–14.

    Article  PubMed  Google Scholar 

  28. Cherry RA, West CE, Hamilton MC, Rafferty CM, Hollenbeak CS, Caputo GM. Reduction of central venous catheter associated blood stream infections following implementation of a resident oversight and credentialing policy. Patient Saf Surg. 2011;5(1):15.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Allen GB, Miller V, Nicholas C, Hess S, Cordes MK, Fortune JB, et al. A multitiered strategy of simulation training, kit consolidation, and electronic documentation is associated with a reduction in central line-associated bloodstream infections. Am J Infect Control. 2014;42(6):643–8.

    Article  PubMed  Google Scholar 

  30. Thomas SM, Burch W, Kuehnle SE, Flood RG, Scalzo AJ, Gerard JM. Simulation training for pediatric residents on central venous catheter placement: a pilot study. Pediatr Crit Care Med. 2013;14(9):e416–23.

    Article  PubMed  Google Scholar 

  31. Kennedy CC, Maldonado F, Cook DA. Simulation-based bronchoscopy training: systematic review and meta-analysis. Chest. 2013;144(1):183–92.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tobler K, Grant E, Marczinski C. Evaluation of the impact of a simulation-enhanced breaking bad news workshop in pediatrics. Simul Healthc. 2014;9(4):213–9.

    Article  PubMed  Google Scholar 

  33. Allan CK, Pigula F, Bacha EA, Emani S, Fynn-Thompson F, Thiagarajan RR, et al. An extracorporeal membrane oxygenation cannulation curriculum featuring a novel integrated skills trainer leads to improved performance among pediatric cardiac surgery trainees. Simul Healthc. 2013;8(4):221–8.

    Article  PubMed  Google Scholar 

  34. Anderson JM, Murphy AA, Boyle KB, Yaeger KA, Halamek LP. Simulating extracorporeal membrane oxygenation emergencies to improve human performance. Part II: assessment of technical and behavioral skills. Simul Healthc. 2006;1(4):228–32.

    Article  PubMed  Google Scholar 

  35. Chan SY, Figueroa M, Spentzas T, Powell A, Holloway R, Shah S. Prospective assessment of novice learners in a simulation-based extracorporeal membrane oxygenation (ECMO) education program. Pediatr Cardiol. 2013;34(3):543–52.

    Article  PubMed  Google Scholar 

  36. Burton KS, Pendergrass TL, Byczkowski TL, Taylor RG, Moyer MR, Falcone RA, et al. Impact of simulation-based extracorporeal membrane oxygenation training in the simulation laboratory and clinical environment. Simul Healthc. 2011;6(5):284–91.

    Article  PubMed  Google Scholar 

  37. Su L, Spaeder MC, Jones MB, Sinha P, Nath DS, Jain PN, et al. Implementation of an extracorporeal cardiopulmonary resuscitation simulation program reduces extracorporeal cardiopulmonary resuscitation times in real patients. Pediatr Crit Care Med. 2014;15(9):856–60.

    Article  PubMed  Google Scholar 

  38. Vandenberghe S, Shu F, Arnold DK, Antaki JF. A simple, economical, and effective portable paediatric mock circulatory system. ProcInst Mech Eng H. 2011;225(7):648–56.

    Article  CAS  Google Scholar 

  39. Geidl L, Deckert Z, Zrunek P, Gottardi R, Sterz F, Wieselthaler G, et al. Intuitive use and usability of ventricular assist device peripheral components in simulated emergency conditions. Artif Organs. 2011;35(8):773–80.

    Article  PubMed  Google Scholar 

  40. Lopez-Herce J, Ferrero L, Mencia S, Anton M, Rodriguez-Nunez A, Rey C, et al. Teaching and training acute renal replacement therapy in children. Nephrol Dial Transplant. 2012;27(5):1807–11.

    Article  PubMed  Google Scholar 

  41. Mottes T, Owens T, Niedner M, Juno J, Shanley TP, Heung M. Improving delivery of continuous renal replacement therapy: impact of a simulation-based educational intervention. Pediatr Crit Care Med. 2013;14(8):747–54.

    Article  PubMed  Google Scholar 

  42. Allan CK, Thiagarajan RR, Beke D, Imprescia A, Kappus LJ, Garden A, et al. Simulation-based training delivered directly to the pediatric cardiac intensive care unit engenders preparedness, comfort, and decreased anxiety among multidisciplinary resuscitation teams. J Thorac Cardiovasc Surg. 2010;140(3):646–52.

    Article  PubMed  Google Scholar 

  43. Figueroa MI, Sepanski R, Goldberg SP, Shah S. Improving teamwork, confidence, and collaboration among members of a pediatric cardiovascular intensive care unit multidisciplinary team using simulation-based team training. Pediatr Cardiol. 2013;34(3):612–9.

    Article  PubMed  Google Scholar 

  44. Weidenbach M, Razek V, Wild F, Khambadkone S, Berlage T, Janousek J, et al. Simulation of congenital heart defects: a novel way of training in echocardiography. Heart. 2009;95(8):636–41.

    Article  CAS  PubMed  Google Scholar 

  45. Lo T, Morrison R, Atkins K, Reynolds F. Novel manikin for chest re-opening simulation training. Intensive Care Med. 2009;35(6):1143–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Duff MD, MEd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Duff, J., Braga, M., Hamilton, M., Tofil, N. (2016). Simulation for Pediatric Critical Care Medicine and Transport. In: Grant, V., Cheng, A. (eds) Comprehensive Healthcare Simulation: Pediatrics. Comprehensive Healthcare Simulation. Springer, Cham. https://doi.org/10.1007/978-3-319-24187-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24187-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24185-2

  • Online ISBN: 978-3-319-24187-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics