Skip to main content

Mannequin-Based Simulators and Task Trainers

  • Chapter
  • First Online:
Comprehensive Healthcare Simulation: Pediatrics

Abstract

Mannequin-based simulators offer specialized functions with compact control systems and minimal physical space requirements. They allow operators to maximize fidelity and learner experiences and optimize the simulator’s use as a research and assessment tool. Mannequin-based simulators are available in autonomous and manual forms, and key differences exist between pediatric and adult models. Various part task trainers can be selected, in addition to whole body simulators, and they allow for a wide range of procedural skills to be performed. Effective programming is key and helps optimize the learning experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Epps C, White ML, Tofil N. Manikin based simulators. In: Levine AI, DeMaria S Jr, Schwartz AD, Sim AJ, editors. The comprehensive textbook of healthcare simulation. 1st ed. New York: Springer; 2013. p. 721.

    Google Scholar 

  2. Dieckmann P, Gaba D, Rall M. Deepening the theoretical foundations of patient simulation as social practice. Simul Healthc. 2007;2(3):183–93.

    Article  PubMed  Google Scholar 

  3. Donoghue AJ, Durbin DR, Nadel FM, Stryjewski GR, Kost SI, Nadkarni VM. Effect of high-fidelity simulation on pediatric advanced life support training in pediatric house staff: a randomized trial. Pediatr Emerg Care. 2009;25(3):139–44.

    Article  PubMed  Google Scholar 

  4. Fraser K, Wright B, Girard L, Tworek J, Paget M, Welikovich L, et al. Simulation training improves diagnostic performance on a real patient with similar clinical findings. Chest. 2011;139(2):376–81.

    Article  PubMed  Google Scholar 

  5. Knudson MM, Khaw L, Bullard MK, Dicker R, Cohen MJ, Staudenmayer K, et al. Trauma training in simulation: translating skills from SIM time to real time. J Trauma. 2008;64(2):255–63. (discussion 63–4).

    Article  PubMed  Google Scholar 

  6. Hoadley TA. Learning advanced cardiac life support: a comparison study of the effects of low- and high-fidelity simulation. Nurs Educ Perspect. 2009;30(2):91–5.

    PubMed  Google Scholar 

  7. Campbell DM, Barozzino T, Farrugia M, Sgro M. High-fidelity simulation in neonatal resuscitation. Paediatr Child Health. 2009;14(1):19–23.

    PubMed  PubMed Central  Google Scholar 

  8. Rehmann A, Mitman R, Reynolds M. A handbook of flight simulation fidelity requirements for human factors research. In: Crew System Ergonomics Information Analysis Center (CSERIAC) 2255 H Street B, Wright-Patterson AFB O-, editors.: Crew System Ergonomics Information Analysis Center (CSERIAC). Wright-Patterson; 1995. p. 46.

    Google Scholar 

  9. Gaba DM. The future vision of simulation in healthcare. Simul Healthc. 2007;2(2):126–35.

    Article  PubMed  Google Scholar 

  10. Healthcare H. CAE healthcare. 2013. http://www.caehealthcare.com. Accessed 3 Nov 2014.

  11. DeLucia P. Definitions of human factors and ergonomics. 2014. http://www.hfes.org/web/educationalresources/hfedefinitionsmain.html. Accessed 26 Oct 2014.

  12. Hamstra SJ, Brydges R, Hatala R, Zendejas B, Cook DA. Reconsidering fidelity in simulation-based training. Acad Med. 2014;89(3):387–92.

    Article  PubMed  Google Scholar 

  13. Cooper JB, Taqueti VR. A brief history of the development of mannequin simulators for clinical education and training. Postgrad Med J. 2008;84(997):563–70.

    Article  CAS  PubMed  Google Scholar 

  14. Ota FS, Yee LL, Garcia FJ, Grisham JE, Yamamoto LG, Which IO. model best simulates the real thing? Pediatr Emerg Care. 2003;19(6):393–6.

    Article  PubMed  Google Scholar 

  15. Kessler DO, Auerbach M, Pusic M, Tunik MG, Foltin JC. A randomized trial of simulation-based deliberate practice for infant lumbar puncture skills. Simul Healthc. 2011;6(4):197–203.

    Article  PubMed  Google Scholar 

  16. Ellis C, Hughes G. Use of human patient simulation to teach emergency medicine trainees advanced airway skills. J Accid Emerg Med. 1999;16(6):395–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Owen H, Plummer JL. Improving learning of a clinical skill: the first year’s experience of teaching endotracheal intubation in a clinical simulation facility. Med Educ. 2002;36(7):635–42.

    Article  PubMed  Google Scholar 

  18. Nishisaki A, Scrattish L, Boulet J, Kalsi M, Maltese M, Castner T, et al. Advances in patient safety effect of recent refresher training on in situ simulated pediatric tracheal intubation psychomotor skill performance. In: Henriksen K, Battles JB, Keyes MA, Grady ML, editors. Advances in patient safety: new directions and alternative approaches (Vol 3: performance and tools). Rockville: Agency for Healthcare Research and Quality (US); 2008.

    Google Scholar 

  19. Advances in Patient Safety. New directions and alternative approaches (Vol. 4: Technology and Medication Safety). Rockville (MD). 2008. http://www.ncbi.nlm.nih.gov/books/NBK43770/.

  20. Nishisaki A, Nadkarni V, Berg R. Intensive care medicine annual update 2009. In: Vincent J, editor. Pediatric advanced airway management training for non-anesthesia residents. New York: Springer; 2009. p. 322–31.

    Google Scholar 

  21. Plummer JL, Owen H. Learning endotracheal intubation in a clinical skills learning center: a quantitative study. Anesth Analg. 2001;93(3):656–62.

    Article  CAS  PubMed  Google Scholar 

  22. Parry K, Owen H. Small simulators for teaching procedural skills in a difficult airway algorithm. Anaesth Intensive Care. 2004;32(3):401–9.

    CAS  PubMed  Google Scholar 

  23. ® LM. Laerdal internet. 2014. http://www.laerdal.com/ca. Accessed 23 Sept 2014.

  24. ® Simulaids. 2014. http://www.simulaids.com. [updated 2014]

  25. Nasco. Nasco [Internet]. Internet. 2014. http://www.enasco.com. [updated 2014; cited 2014]

  26. Bowyer MW, Manahl M, Acosta E, Stutzmen J, Liu A. Far forward feasibility: testing a cricothyroidotmy simulator in Iraq. Stud Health Technol Inform. 2008;132:37–41.

    PubMed  Google Scholar 

  27. Gaies MG, Morris SA, Hafler JP, Graham DA, Capraro AJ, Zhou J, et al. Reforming procedural skills training for pediatric residents: a randomized, interventional trial. Pediatrics. 2009;124(2):610–9.

    Article  PubMed  Google Scholar 

  28. Britt RC, Novosel TJ, Britt LD, Sullivan M. The impact of central line simulation before the ICU experience. Am J Surg. 2009;197(4):533–6.

    Article  PubMed  Google Scholar 

  29. Macnab AJ, Macnab M. Teaching pediatric procedures: the Vancouver model for instructing Seldinger’s technique of central venous access via the femoral vein. Pediatrics. 1999;103(1):E8.

    Article  CAS  PubMed  Google Scholar 

  30. Velmahos GC, Toutouzas KG, Sillin LF, Chan L, Clark RE, Theodorou D, et al. Cognitive task analysis for teaching technical skills in an inanimate surgical skills laboratory. Am J Surg. 2004;187(1):114–9.

    Article  PubMed  Google Scholar 

  31. Barsuk JH, Cohen ER, Potts S, Demo H, Gupta S, Feinglass J, et al. Dissemination of a simulation-based mastery learning intervention reduces central line-associated bloodstream infections. BMJ Qual Saf. 2014;23(9):749–56.

    Article  PubMed  Google Scholar 

  32. Simulab. Simulab corporation Internet. 2014. http://www.simulab.com. [cited 2014]

  33. Oriot D, Darrieux E, Boureau-Voultoury A, Ragot S, Scepi M. Validation of a performance assessment scale for simulated intraosseous access. Simul Healthc. 2012;7(3):171–5.

    Article  PubMed  Google Scholar 

  34. Shefrin AE, Khazei A, Hung GR, Odendal LT, Cheng A. The TACTIC: development and validation of the tool for assessing chest tube insertion competency. CJEM. 2014;16(0):32–9.

    Google Scholar 

  35. Al-Qadhi SA, Pirie JR, Constas N, Corrin MS, Ali M. An innovative pediatric chest tube insertion task trainer simulation: a technical report and pilot study. Simul Healthc. 2014;9(5):319–24.

    Article  PubMed  Google Scholar 

  36. Auerbach M, Chang TP, Reid J, Quinones C, Krantz A, Pratt A, et al. Are pediatric interns prepared to perform infant lumbar punctures? A multi-institutional descriptive study. Pediatr Emerg Care. 2013;29(4):453–7.

    Article  PubMed  Google Scholar 

  37. White ML, Jones R, Zinkan L, Tofil NM. Transfer of simulated lumbar puncture training to the clinical setting. Pediatr Emerg Care. 2012;28(10):1009–12.

    Article  PubMed  Google Scholar 

  38. Iyer MS, Santen SA, Nypaver M, Warrier K, Bradin S, Chapman R, et al. Assessing the validity evidence of an objective structured assessment tool of technical skills for neonatal lumbar punctures. Acad Emerg Med. 2013;20(3):321–4.

    Article  PubMed  Google Scholar 

  39. Things LA. Limbs and things Canada Internet. 2014. http://www.limbsandthings.com/ca/home. [cited 2014 Sept 24]

  40. Bridges M, Diamond DL. The financial impact of teaching surgical residents in the operating room. Am J Surg. 1999;177(1):28–32.

    Article  CAS  PubMed  Google Scholar 

  41. Naylor RA, Hollett LA, Castellvi A, Valentine RJ, Scott DJ. Preparing medical students to enter surgery residencies. Am J Surg. 2010;199(1):105–9.

    Article  PubMed  Google Scholar 

  42. Parent RJ, Plerhoples TA, Long EE, Zimmer DM, Teshome M, Mohr CJ, et al. Early, intermediate, and late effects of a surgical skills “boot camp” on an objective structured assessment of technical skills: a randomized controlled study. J Am Coll Surg. 2010;210(6):984–9.

    Article  PubMed  Google Scholar 

  43. Gershuni V, Woodhouse J, Brunt LM. Retention of suturing and knot-tying skills in senior medical students after proficiency-based training: results of a prospective, randomized trial. Surgery. 2013;154(4):823–9. (discussion 9–30).

    Article  PubMed  Google Scholar 

  44. Fernandez GL, Page DW, Coe NP, Lee PC, Patterson LA, Skylizard L, et al. Boot cAMP: educational outcomes after 4 successive years of preparatory simulation-based training at onset of internship. J Surg Educ. 2012;69(2):242–8.

    Article  PubMed  Google Scholar 

  45. Sturm LP, Windsor JA, Cosman PH, Cregan P, Hewett PJ, Maddern GJ. A systematic review of skills transfer after surgical simulation training. Ann Surg. 2008;248(2):166–79.

    Article  PubMed  Google Scholar 

  46. Dawe SR, Pena GN, Windsor JA, Broeders JA, Cregan PC, Hewett PJ, et al. Systematic review of skills transfer after surgical simulation-based training. Br J Surg. 2014;101(9):1063–76.

    Article  CAS  PubMed  Google Scholar 

  47. Nagendran M, Toon CD, Davidson BR, Gurusamy KS. Laparoscopic surgical box model training for surgical trainees with no prior laparoscopic experience. Cochrane Database Syst Rev. 2014;1:Cd010479.

    PubMed  Google Scholar 

  48. Nagendran M, Gurusamy KS, Aggarwal R, Loizidou M, Davidson BR. Virtual reality training for surgical trainees in laparoscopic surgery. Cochrane Database Syst Rev. 2013;8:Cd006575.

    PubMed  Google Scholar 

  49. Niles D, Sutton RM, Donoghue A, Kalsi MS, Roberts K, Boyle L, et al. “Rolling Refreshers”: a novel approach to maintain CPR psychomotor skill competence. Resuscitation. 2009;80(8):909–12.

    Article  PubMed  Google Scholar 

  50. Kagaku K. Kyoto Kagaku Co, Ltd. 2014. http://www.kyotokagaku.com. [updated 2012].

  51. OtoSim. OtoSim better ear and eye training internet. 2014. http://www.otosim.com. [updated 2014; cited 2014].

  52. Downing S, Yudkowsky R. Assessment in health professions education. New York: Routledge; 2009. (Downing S, Yudkowsky R. editors)

    Google Scholar 

  53. Issenberg SB, Scalese RJ. Simulation in health care education. Perspect Biol Med. 2008;51(1):31–46.

    Article  PubMed  Google Scholar 

  54. Forrest K, McKimm J, Edgar S. Essential simulation in clinical education. West Sussex: Wiley-Blackwell; 2013.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arielle Levy MD, MEd, FRCPC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Levy, A., Allain, D., Kotsakis, A., Varshney, T. (2016). Mannequin-Based Simulators and Task Trainers. In: Grant, V., Cheng, A. (eds) Comprehensive Healthcare Simulation: Pediatrics. Comprehensive Healthcare Simulation. Springer, Cham. https://doi.org/10.1007/978-3-319-24187-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24187-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24185-2

  • Online ISBN: 978-3-319-24187-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics