Skip to main content

Cognitive Load and Stress in Simulation

  • Chapter
  • First Online:
Comprehensive Healthcare Simulation: Pediatrics

Abstract

Simulation-based education (SBE) has all the requisite elements for a stressful experience: being novel, unpredictable, imparting a sense of lack of control, and potentially threatening the participant’s ego. Indeed, SBE has been shown to evoke a physiological stress response in learners, which can be measured objectively using physiological or biological means, or subjectively using self-report questionnaires. The interaction between stress and cognitive load on performance and learning in the simulation environment is complex and not yet fully elucidated. At an appropriate level of cognitive load and moderate level of stress, simulation challenges and engages the learner, contributing to improved performance and learning outcomes. On the other hand, excessive stress can contribute to cognitive overload, attentional narrowing and distractibility, all of which are associated with impaired performance. Despite this detrimental effect of stress, learning can still be reinforced at high-stress levels through the enhancement on memory consolidation.

In the simulation arena, stress results not only from the scenario difficulty but also from emotions, noise, team dynamics, the presence of observers, and the subjective perception of being appraised. The learners’ perception of their abilities to meet the presented challenge will dictate their stress response and this in turn is likely influenced by prior experience in simulation, clinical expertise, perceived task difficulty, team factors, as well as their personality traits and coping styles. Several studies have reported that SBE could provide higher stress levels in trainees than those they may experience during real-life clinical situations. Simulation educators have traditionally embraced the potential benefits of adding realistic stress to simulation training. However, they should be equally cognizant of the potentially negative effects of stress on performance and consider strategies to minimize unnecessary stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. How to measure stress in humans? Centre for studies on Human stress. Fernand-Seguin Research Centre of Louis-H. Lafontaine Hospital Quebec, Canada. 2007. http://www.stresshumain.ca/documents/pdf/Mesures%20physiologiques/CESH_howMesureStress-MB.pdf.

  2. Selye H. A syndrome produced by diverse nocuous agents. J Neuropsychiatr. 1998;10:230–1.

    Article  CAS  Google Scholar 

  3. McGrath JE. Stress and behavior in organizations. In: Dunnette MD, editor. Handbook of industrial and organizational psychology. Chicago: McNally R; 1976. pp. 1351–95.

    Google Scholar 

  4. Tomaka J, Blascovich J, Kelsey RM, Leitten CL. Subjective, physiological, and behavioral effects of threat and challenge appraisal. J Pers Soc Psychol. 1993;65:248–60.

    Article  Google Scholar 

  5. Mason JW. A review of psychoendocrine research on the pituitary-adrenal cortical system. Psychosom Med. 1968;30(suppl 5):576–607.

    Article  PubMed  Google Scholar 

  6. Bong C, Lightdale J, Fredette M, Weinstock P. Effects of simulation versus traditional tutorial-based training on physiologic stress levels among clinicians: a pilot study. Simul Healthc. 2010;5(5):272–8.

    Article  PubMed  Google Scholar 

  7. Müller MP, Hänsel M, Fichtner A, Hardt F, Weber S, Kirschbaum C, et al. Excellence in performance and stress reduction during two different full scale simulator training courses: a pilot study. Resuscitation. 2009;80:919–24.

    Article  PubMed  Google Scholar 

  8. Arora S, Sevdalis N, Nestel D, Woloshynowych M, Darzi A, Kneebone RL. The impact of stress on surgical performance: a systematic review of the literature. Surgery. 2010;147:318–30.

    Article  PubMed  Google Scholar 

  9. Speilberger CD, Gorsuch RL, Lushene R. STAI manual. Palo Alto: Consulting Psychologist Press; 1970.

    Google Scholar 

  10. Lovibond SH, Lovibond PF. Manual for the depression anxiety stress scales. 2nd ed. Sydney: Psychology Foundation; 1995. ISBN 7334-1423-0.

    Google Scholar 

  11. Antony MM, Bieling PJ, Cox BJ, Enns MW, Swinson RP. Psychometric properties of the 42-item and 21-item versions of the depression anxiety stress scales in clinical groups and a community sample. Psychol Assess. 1998;10(2):176–81.

    Article  Google Scholar 

  12. Lesage FX, Berjot S, Deschamps F. Clinical stress assessment using a visual analogue scale. Occup Med (Lond). 2012;62:600–5.

    Article  Google Scholar 

  13. Harvey A, Nathens AB, Bandiera G, LeBlanc VR. Threat and challenge: cognitive appraisal and stress responses in simulated trauma resuscitations. Med Educ. 2010;44:587–94.

    Article  PubMed  Google Scholar 

  14. Becker W, Ellis H, Goldsmith R, Kaye A. Heart rates of surgeons in theatre. Ergonomics. 1983;26:803–7.

    Article  CAS  PubMed  Google Scholar 

  15. Pagani M, Furlan R, Pizzinelli P, Crivellaro W, Cerutti S, Malliani A. Spectral analysis of R-R and arterial pressure variabilities to assess sympatho-vagal interaction during mental stress in humans. J Hypertens.1989;7:14–5.

    Article  Google Scholar 

  16. Boucsein W. Electrodermal activity. New York: Plenum Press; 1992.

    Book  Google Scholar 

  17. Smith WD, Chung YH, Berguer R. A virtual instrument ergonomics workstation for measuring the mental workload of performing video-endoscopic surgery. Stud Health Technol Inform. 2000;70:309–15.

    CAS  PubMed  Google Scholar 

  18. Dorn LD, Lucke JF, Loucks TL, Berga SL. Salivary cortisol reflects serum cortisol: analysis of circadian profiles. Ann Clin Biochem. 2007;44:281–4.

    Article  CAS  PubMed  Google Scholar 

  19. Gozansky WS, Lynn JS, Laudenslager ML, Kohrt WM. Salivary cortisol determined by enzyme immunoassay is preferable to serum total cortisol for assessment of dynamic hypothalamic–pituitary–adrenal axis activity. Clin Endocrinol (Oxf). 2005;63(3):336–41.

    Article  CAS  Google Scholar 

  20. Dickerson SS, Kemeny ME. Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychol Bull. 2004;130:355–91.

    Article  PubMed  Google Scholar 

  21. Kudielka BM, Schommer NC, Hellhammer DH, Kirschbaum C, Acute HPA. Axis responses, heart rate, and mood changes to psychosocial stress (TSST) in humans at different times of day. Psychoneuroendocrinology. 2004;29:983–92.

    Article  CAS  PubMed  Google Scholar 

  22. Maheu FS, Collicutt P, Kornik R, Moszkowski R, Lupien SJ. The perfect time to be stressed: a differential modulation of human memory by stress applied in the morning or in the afternoon. Prog Neuropsychopharmacol Biol Psychiatr. 2005;29(8):1281–8.

    Article  Google Scholar 

  23. Granger DA, Kivlighan KT, El-Shiekh M, Gordis EB, Stroud LR. Salivary alpha-amylase in biobehavioral research: recent developments and applications. Ann NY Acad Sci. 2007;1098:122–44.

    Article  CAS  PubMed  Google Scholar 

  24. Thoma MV, Kirschbaum C, Wolf JM, Rohleder N. Acute stress responses in salivary alpha-amylase predict increases of plasma norepinephrine. Biol Psychol. 91(3):342–8.

    Google Scholar 

  25. Takai N, Yamaguchi M, Aragaki T, Eto K, Uchihashi K, Nishikawa Y. Effect of psychological stress on the salivary cortisol and amylase levels in healthy young adults. Arch Oral Biol. 2004 Dec;49(12):963–8.

    Article  CAS  PubMed  Google Scholar 

  26. Nater UM, Rohleder N, Schlotz W, Ehlert U, Kirschbaum C. Determinants of the diurnal course of salivary alpha-amylase. Psychoneuroendocrinology. 2007;32:392–401.

    Article  CAS  PubMed  Google Scholar 

  27. Noto Y, Sato T, Kudo M, Kurata K, Hirota K. The relationship between salivary biomarkers and state-trait anxiety inventory score under mental arithmetic stress: a pilot study. Anesth Analg. 2005;101(6):1873–6.

    Article  CAS  PubMed  Google Scholar 

  28. Oldehinkel AJ, Ormel J, Bosch NM, Bouma EMC, Van Roon AM, Rosmalen JGM, et al. Stressed out? Associations between perceived and physiological stress responses in adolescents: the TRAILS study. Psychophysiology. 2011;48:441–52.

    Article  PubMed  Google Scholar 

  29. Arora S, Tierney T, Sevdalis N, Aggarwal, Nestel D, Woloshynowych M, et. al. The Imperial Stress Assessment Tool (ISAT): a feasible, reliable and valid approach to measuring stress in the operating room. World J Surg. 2010;34:1756–63.

    Google Scholar 

  30. Kharasch M, Aitchison P, Pettineo C, Pettineo L, Wang EE. Physiological stress responses of emergency medicine residents during an immersive medical simulation scenario. Dis Mon. 2011;57(11):700–5.

    Article  PubMed  Google Scholar 

  31. Girzadas DV, Delis S, Bose S, Rzechula K, Kulstad EB. Measures of stress and learning seem to be equally affected among all roles in a simulation scenario. Simul Healthc. 2009;4:149–54.

    Article  PubMed  Google Scholar 

  32. Keitel A, Ringleb M, Schwartges I, Weik U, Picker O, Stockhorst U, et al. Endocrine and psychological stress responses in a simulated emergency situation. Psychoneuroendocrinology. 2011;36:98–108.

    Article  CAS  PubMed  Google Scholar 

  33. Quilici AP, Pogetti RS, Fontes B, Zantut LFC, Chaves ET, Birolini D. Is the advanced trauma life support simulation exam more stressful for the surgeon than emergency department trauma care? Clinics. 2005;60(4):287–92.

    Article  PubMed  Google Scholar 

  34. Jones T, Goss S, Weeks B, Miura H, Bassandeh D, Cheek D. The effects of high-fidelity simulation on salivary cortisol levels in sRNA students: a pilot study. Sci World J. 2011;11:86–92.

    Article  CAS  Google Scholar 

  35. Williams LJ. Cognitive load and the functional field of view. Hum Factors. 1982;24(6):683–92.

    CAS  PubMed  Google Scholar 

  36. Lamble D, Kauranen T, Laakso M, Summala H. Cognitive load and detection thresholds in car following situations: safety implications for using mobile (cellular) telephones while driving. Accid Anal Prev. 1999;31(6):617–23.

    Article  CAS  PubMed  Google Scholar 

  37. Miller GA. The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev. 1956;63:81–97.

    Article  CAS  PubMed  Google Scholar 

  38. Sweller J. Cognitive load during problem solving: effects on learning. Cogn Sci. 1988;12(2):257–85.

    Article  Google Scholar 

  39. Sweller J, Ayres P, Kalyuga S. Cognitive load theory. New York: Springer; 2011.

    Book  Google Scholar 

  40. Chandler P, Sweller J. Cognitive load theory and the format of instruction. Cogn Instr. 1991;8(4):293–332.

    Article  Google Scholar 

  41. Van Merrienboer JJG, Sweller J. Cognitive load theory in health professional education: design principles and strategies. Med Educ. 2010;44(1):85–93.

    Article  PubMed  Google Scholar 

  42. Van Merrienboer JJG, Kirschner PA, Kester L. Taking the load off a learner’s mind: instructional design for complex learning. Educ Psychol. 2003;38(1):5–13.

    Article  Google Scholar 

  43. Ericcson K, Chase WG, Faloon S. Acquisition of a memory skill. Science. 1980;208(4448):1181–2.

    Article  CAS  PubMed  Google Scholar 

  44. Sweller J, Cooper GA. The use of worked examples as a substitute for problem solving in learning algebra. Cogn Instr. 1985;1:59–89.

    Article  Google Scholar 

  45. Atkinson RK, Derry SJ, Renkl A, Wortham D. Learning from examples: instructional principles from the worked examples research. Rev Educ Res. 2000;70:181–214.

    Article  Google Scholar 

  46. Vygotsky LS. Mind in society: the development of higher mental processes. Cambridge: Harvard University Press; 1978. (In: Cole M, John-Steiner V, Scribner S, Souberman E, editors)

    Google Scholar 

  47. Kalyuga S, Ayres P, Chandler P, Sweller J. The expertise reversal effect. Educ Psychol. 2003;38(1):23–31.

    Article  Google Scholar 

  48. Paas F, Van Merrienboer J. The efficiency of instructional conditions: an approach to combine mental effort and performance measures. Hum Factors. 1993;35:737–43.

    Google Scholar 

  49. Paas FG. Training strategies for attaining transfer of problem-solving skill in statistics: a cognitive-load approach. J Educ Psychol. 1992;84(4):429.

    Article  Google Scholar 

  50. Brünken R, Steinbacher S, Plass JL, Leutner D. Assessment of cognitive load in multimedia learning using dual-task methodology. Exp Psychol. 2002;49(2):109.

    Article  PubMed  Google Scholar 

  51. Paas FG, Van Merriënboer JJ. Variability of worked examples and transfer of geometrical problem-solving skills: a cognitive-load approach. J Educ Psychol. 1994;86(1):122.

    Article  Google Scholar 

  52. Antonenko P, Paas F, Grabner R, van Gog T. Using electroencephalography to measure cognitive load. Educ Psychol Rev. 2010;22(4):425–38.

    Article  Google Scholar 

  53. Van Gerven PW, Paas F, Van Merriënboer JJ, Schmidt HG. Memory load and the cognitive pupillary response in aging. Psychophysiology. 2004;41(2):167–74.

    Article  PubMed  Google Scholar 

  54. van Gog T, Scheiter K. Eye tracking as a tool to study and enhance multimedia learning. Learn Instr. 2010;20(2):95–9.

    Article  Google Scholar 

  55. Paas F, Tuovinen JE, Tabbers H, Van Gerven PWM. Cognitive load measurement as a means to advance cognitive load theory. Educ Psychol. 2003;38(1):63–71.

    Article  Google Scholar 

  56. Wolf OT. The influence of stress hormones on emotional memory: relevance for psychopathology. Acta Psychol. 2008;127(3):513–31.

    Article  Google Scholar 

  57. Staal MA. Stress, cognition, and human performance: a literature review and conceptual framework. NASA technical memorandum, TM-2004-212824. Moffett Field: Ames Research Centre; 2004.

    Google Scholar 

  58. Cahill L, Gorski L, Le K. Enhanced human memory consolidation with post-learning stress: interaction with the degree of arousal at encoding. Learn Mem. 2003;10(4):270–4.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kuhlmann S, Piel M, Wolf OT. Impaired memory retrieval after psychosocial stress in healthy young men. J Neurosci. 2005;25(11):2977–82.

    Article  CAS  PubMed  Google Scholar 

  60. Yerkes RM, Dodson JD. The relation of strength of stimulus to rapidity of habit-formation. J Comp Neurol Psychol. 1908;18:459–82.

    Article  Google Scholar 

  61. Selye H. The stress of life. New York: McGraw-Hill; 1956.

    Google Scholar 

  62. Duffy E. The psychological significance of the concept of “arousal” or “activation.”. Psychol Rev. 1957;64:265–75.

    Article  CAS  PubMed  Google Scholar 

  63. Stokes AF, Kite K. On grasping a nettle and becoming emotional. In: Hancock PA, Desmond PA, editors. Stress, workload, and fatigue. Mahwah: Erlbaum; 2001.

    Google Scholar 

  64. Broadbent DE. Decision and Stress. London: Academic; 1971.

    Google Scholar 

  65. Mazur LM, Mosaly PR, Jackson M, Chang SX, Burkhardt KD, Adams RD, et al. Quantitative assessment of workload and stressors in clinical radiation oncology. Int J Radiat Oncol Biol Phys. 2012;83:e571–6.

    Article  PubMed  Google Scholar 

  66. Hassan I, Weyers P, Maschuw K, Dick B, Gerdes B, Rothmund M, et al. Negative stress-coping strategies among novices in surgery correlate with poor virtual laparoscopic performance. Br J Surg. 2006;93:1554–9.

    Article  CAS  PubMed  Google Scholar 

  67. Jezova D, Slezak V, Alexandrova M, Motovska Z, Jurankova E, Vigas M, et al. Professional stress in surgeons and artists as assessed by salivary cortisol. In: Stress Neuroendocrine and molecular approaches. Vols 1991, 1992. Philadelphia: Gordon & Breach Science Publishers; 1992. pp. 1953–62.

    Google Scholar 

  68. Yamamoto A, Hara T, Kikuchi K, Fujiwara T. Intraoperative stress experienced by surgeons and assistants. Ophthal Surg Lasers. 1999;30:27–30.

    CAS  Google Scholar 

  69. Sami A, Waseem H, Nourah A, Areej A, Afnan A, Ghadeer AS, et al. Real-time observations of stressful events in the operating room. Saudi J Anaesth. 2012;6:136–9.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Piquette D, Reeves S, LeBlanc VR. Stressful intensive care unit medical crises: how individual responses impact on team performance. Crit Care Med. 2009;37:1251–5.

    Article  PubMed  Google Scholar 

  71. Cumming SR, Harris LM. The impact of anxiety on the accuracy of diagnostic decision-making. Stress Health. 2001;17:281–6.

    Article  Google Scholar 

  72. Arora S, Sevdalis N, Nestel D, Tierney T, Woloshynowych M, Kneebone R. Managing intraoperative stress: what do surgeons want from a crisis training program? Am J Surg. 2009;197:537–43.

    Article  PubMed  Google Scholar 

  73. Undre S, Koutantji M, Sevdalis N, Gautama S, Selvapatt N, Williams S, et al. Multidisciplinary crisis simulations: the way forward for training surgical teams. World J Surg. 2007;31:1843–53.

    Article  PubMed  Google Scholar 

  74. Wetzel CM, Kneebone RL, Woloshynowych M, Nestel D, Moorthy K, Kidd J, et al. The effects of stress on surgical performance. Am J Surg. 2006;191:5–10.

    Article  PubMed  Google Scholar 

  75. Hull F, Arora S, Kassab E, Kneebone R, Sevdalis N. Assessment of stress and teamwork in the operating room: an exploratory study. Am J Surg. 2011;201:24–30.

    Article  PubMed  Google Scholar 

  76. Berguer R, Smith WD, Chung YH. Performing laparoscopic surgery is significantly more stressful for the surgeon than open surgery. Surg Endosc. 2001;15:1204–7.

    Article  CAS  PubMed  Google Scholar 

  77. Bohm B, Rotting N, Schwenk W, Grebre S, Mansmann U. A prospective randomized trial on heart rate variability of the surgical team during laparoscopic and conventional sigmoid resection. Arch Surg. 2001;136:305–10.

    Article  CAS  PubMed  Google Scholar 

  78. Kikuchi K, Okuyama K, Yamamoto A, Hara T, Hara T. Intraoperative stress for surgeons and assistants. J Ophthal Nurs Technol. 1995;14:68–70.

    CAS  Google Scholar 

  79. Leblanc V, Woodrow S, Sidhu R, Dubrowski A. Moderate examination stress leads to improvements on fundamental technical skills in surgical residents. Am J Surg. 2008;196:114–9.

    Article  PubMed  Google Scholar 

  80. Andreatta PB, Hillard M, Krain LP. The impact of stress factors in simulation-based laparoscopic training. Surgery. 2010;147:631–9.

    Article  PubMed  Google Scholar 

  81. Poolton JM, Wilson MR, Malhotra N, Ngo K, Masters RSW. A comparison of evaluation, time pressure, and multitasking as stressors of psychomotor operative performance. Surgery. 2011;149:776–82.

    Article  PubMed  Google Scholar 

  82. Wetzel CM, Black SA, Hanna GB, Athanasiou T, Kneebone RL, Nestel D, et al. The effects of stress and coping on surgical performance during simulations. Ann Surg. 2010;251:171–6.

    Article  PubMed  Google Scholar 

  83. McGraw LK, Out D, Hammermeister JJ, Ohlson CJ, Pickering MA, Granger DA. Nature, correlates, and consequences of stress-related biological reactivity and regulation in Army nurses during combat casualty simulation. Psychoneuroendocrinology. 2013;38:135–44.

    Article  CAS  PubMed  Google Scholar 

  84. Ghazali A, Faure JP, Millet C, Brèque C, Scépi M, Oriot D. Patterns of stress response during simulated laparoscopy: preliminary results for novice and proficient participants. (In review).

    Google Scholar 

  85. Epstein RM. Assessment in medical education. N Engl J Med. 2007;356:387–96.

    Article  CAS  PubMed  Google Scholar 

  86. Weinstock P. Pediatric simulation instructor workshop. Boston: Harvard Medical School; 2013.

    Google Scholar 

  87. Hulsman RL, Pranger S, Koot S, Fabriek M, Karemaker JM, Smets EM. How stressful is doctor–patient communication? Physiological and psychological stress of medical students in simulated history taking and bad-news consultations. Int J Psychophys. 2010;77:26–34.

    Article  Google Scholar 

  88. Shaw J, Brown R, Heinrich P, Dunn S. Doctors’ experience of stress during simulated bad news consultations. Pat Educ Counsel. 2013;93:203–8.

    Article  Google Scholar 

  89. LeBlanc VR, McArthur B, King K, MacDonald R, Lepine T. Paramedic performance in calculating drug dosages following stressful scenarios in a human patient simulator. Prehosp Emerg Care. 2005;9:439–44.

    Article  PubMed  Google Scholar 

  90. LeBlanc VR. The effects of acute stress on performance: implications for health professions education. Acad Med 2009;84(10):25–33.

    Article  Google Scholar 

  91. Cook DA, Hatala R, Brydges R, Zendejas B, Szostek JH, Wang AT, et al. Technology-enhanced simulation for health professions education. JAMA. 2011;306:978–88.

    CAS  PubMed  Google Scholar 

  92. Wetzel CM, George A, Hanna GB, Athanasiou T, Black SA, Kneebone RL, et al. Stress management training for surgeons-a randomized, controlled, intervention study. Ann Surg. 2011;253:488–94.

    Article  PubMed  Google Scholar 

  93. Bong C, Lee S, Allen J, Lim E, Goh ZQ, Kok C, Ng A. Effects of Stress on Observers and their subsequent performance during high fidelity simulation-based training. Oral presentation at IPSSW 2014. 2014. (In review)

    Google Scholar 

  94. Smeets T, Wolf OT, Giesbrecht T, Sijstermans K, Telgen S, Joëls M. Stress selectively and lastingly promotes learning of context-related high arousing information. Psychoneuroendocrinology. 2009;34:1152–61.

    Article  CAS  PubMed  Google Scholar 

  95. Brett-Fleegler M, Rudolph J, Eppich W, Monuteaux M, Fleegler E, Cheng A, et al. Debriefing assessment for simulation in healthcare: development and psychometric properties. Simul Healthc. 2012;7(5):288–94.

    Article  PubMed  Google Scholar 

  96. Fraser K, Ma I, Teteris E, Baxter H, Wright B, McLaughlin K. Emotion, cognitive load and learning outcomes during simulation training. Med Educ. 2012;46(11):1055–62.

    Article  PubMed  Google Scholar 

  97. Fraser K, Huffman J, Ma I, Sobczak M, McIlwrick J, Wright B, et al. The emotional and cognitive impact of unexpected simulated patient death: a randomized controlled trial. CHEST Journal [Internet]. 2013. http://dx.doi.org/10.1378/chest.13-0987.

  98. Fanning RM, Gaba DM. The role of debriefing in simulation-based learning. Simul Healthc. 2007;2(2):115–25.

    Article  PubMed  Google Scholar 

  99. Yerkes R, Dodson J. The dancing mouse, a study in animal behavior. J Comp Neurol Psychol. 1907;18:459–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choon Looi Bong MBChB, FRCA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bong, C., Fraser, K., Oriot, D. (2016). Cognitive Load and Stress in Simulation. In: Grant, V., Cheng, A. (eds) Comprehensive Healthcare Simulation: Pediatrics. Comprehensive Healthcare Simulation. Springer, Cham. https://doi.org/10.1007/978-3-319-24187-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24187-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24185-2

  • Online ISBN: 978-3-319-24187-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics