Skip to main content

Part of the book series: SpringerBriefs in Environmental Science ((BRIEFSENVIRONMENTAL))

Abstract

A substantial body of research has established the correlation between NDVI and aboveground biomass, and knowledge of the theoretical basis for using satellite-derived NDVI as a general proxy for vegetation conditions has advanced (Mbow et al. 2014; Pettorelli et al. 2005; Sellers et al. 1994). Reduction of primary productivity is a reliable indicator of the decrease or destruction of the biological productivity, particularly in drylands (Wessels et al. 2004; Li et al. 2004). NPP expressed in g of C m−2 years−1 and quantifies net carbon fixed by vegetation. According to Cao et al. (2003), NPP is “the beginning of the carbon biogeochemical cycle,” defined mathematically as in Eq. (5.1):

$$ \mathrm{N}\mathrm{P}\mathrm{P}=f\left(\mathrm{NDVI,,,,PAR,,,,fPAR,,,,aPAR,,,,LAI}\right) $$

where fPAR is the fraction of absorbed photosynthetic active radiation, aPAR is the absorbed photosynthetic active radiation, and LAI is the leaf area index. Changes in NPP or, rather, its proxy NDVI induced by land degradation can be measured using a range of remote sensing techniques so remote sensing has become an essential tool for global, regional, and national studies of land degradation (Anyamba and Tucker 2012; Bai et al. 2008; Bajocco et al. 2012; de Jong et al. 2011b; Field et al. 1995; Horion et al. 2014; Le et al. 2014; Prince and Goward 1995). Many approaches have been developed to estimate NPP, notably the Global Production Efficiency Model (GLO‐PEM) (Prince and Goward 1995), the Light-Use Efficiency (LUE) Model (Monteith and Moss 1977), the Production Efficiency Approach (Goetz et al. 1999; Goward and Huemmrich 1992), and the Sim‐CYCLE (Ito and Oikawa 2002). And models have been developed to estimate NPP directly from remotely sensed NDVI at a global scale. Running et al. (2004) offered Eq. (5.2):

$$ \mathrm{N}\mathrm{P}\mathrm{P}=\varSigma \left(\varepsilon \times \mathrm{N}\mathrm{DVI}\times \mathrm{P}\mathrm{A}\mathrm{R}-{\mathrm{R}}_{lr}\right)-{\mathrm{R}}_g-{\mathrm{R}}_m $$

where ε is the conversion efficiency; PAR is photosynthetically active radiation; R lr is 24-h maintenance respiration of leaves and fine roots; R g is annual growth respiration required to construct leaves, fine roots, and new woody tissues; and R m is the maintenance respiration of live cells in woody tissues. Drawing on this relationship, Bai et al. (2008) adopted an empirical relationship to translate NDVI trends to NPP trends for their proxy global assessment of land degradation (Eq. 5.3):

$$ {\mathrm{NPP}}_{\mathrm{MOD}17}\left( kg\kern0.24em C\kern0.24em h{a}^{-1}{\mathrm{year}}^{-1}\right)=1106.37\times \varSigma \mathrm{NDVI}-564.55 $$

where NPPMOD17 is the annual mean NPP derived from MODIS MOD17 Collection four data and sum NDVI is the 4-year (2000–2003) mean annual sum NDVI derived from GIMMS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albergel J (1988) Genèse et prédétermination des crues au Burkina Faso: du m2 au km2: étude des paramètres hydrologiques et de leur évolution. Ph.D. Thesis. Editions de l’Orstom, 1988, 330p, Université Paris 6

    Google Scholar 

  • Anyamba A, Tucker CJ (2012) Historical perspective of AVHRR NDVI and vegetation drought monitoring. Remote Sens Drought: Innovative Monit Approaches 23

    Google Scholar 

  • Bai ZG, Dent DL, Olsson L, Schaepman ME (2008) Proxy global assessment of land degradation. Soil Use Manag 24(3):223–234

    Article  Google Scholar 

  • Bajocco S, De Angelis A, Perini L, Ferrara A, Salvati L (2012) The impact of land use/land cover changes on land degradation dynamics: a Mediterranean case study. Environ Manage 49(5):980–989

    Article  Google Scholar 

  • Bradley BA, Mustard JF (2008) Comparison of phenology trends by land cover class: a case study in the Great Basin, USA. Glob Chang Biol 14(2):334–346

    Article  Google Scholar 

  • Cao M, Prince SD, Li K, Tao B, Small J, Shao X (2003) Response of terrestrial carbon uptake to climate interannual variability in China. Glob Chang Biol 9(4):536–546

    Article  Google Scholar 

  • Dardel C, Kergoat L, Hiernaux P, Grippa M, Mougin E, Ciais P, Nguyen C-C (2014) Rain-use-efficiency: what it tells us about the conflicting Sahel greening and Sahelian Paradox. Remote Sens 6(4):3446–3474

    Article  Google Scholar 

  • De Beurs K, Henebry G (2005) A statistical framework for the analysis of long image time series. Int J Remote Sens 26(8):1551–1573

    Article  Google Scholar 

  • de Jong R, de Bruin S, de Wit A, Schaepman ME, Dent DL (2011a) Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens Environ 115(2):692–702. doi:http://dx.doi.org/10.1016/j.rse.2010.10.011

  • de Jong R, de Bruin S, Schaepman M, Dent D (2011b) Quantitative mapping of global land degradation using Earth observations. Int J Remote Sens 32(21):6823–6853

    Article  Google Scholar 

  • de Jong R, Verbesselt J, Schaepman ME, De Bruin S (2011c) Detection of breakpoints in global NDVI time series. In: 34th International Symposium on Remote Sensing of Environment (ISRSE), pp 10–15

    Google Scholar 

  • Diouf A, Lambin E (2001) Monitoring land-cover changes in semi-arid regions: remote sensing data and field observations in the Ferlo, Senegal. J Arid Environ 48(2):129–148

    Article  Google Scholar 

  • Erian WF (2005) Arab network of the remote sensing centers for desertification monitoring and assessment. In: Remote sensing and geoinformation processing in the assessment and monitoring of land degradation and desertification, Trier, Germany, pp 452–459

    Google Scholar 

  • Evans J, Geerken R (2004) Discrimination between climate and human-induced dryland degradation. J Arid Environ 57(4):535–554

    Article  Google Scholar 

  • Fensholt R, Rasmussen K (2011) Analysis of trends in the Sahelian ‘rain-use efficiency’ using GIMMS NDVI, RFE and GPCP rainfall data. Remote Sens Environ 115(2):438–451

    Article  Google Scholar 

  • Fensholt R, Langanke T, Rasmussen K, Reenberg A, Prince SD, Tucker C, Scholes RJ, Le QB, Bondeau A, Eastman R, Epstein H, Gaughan AE, Hellden U, Mbow C, Olsson L, Paruelo J, Schweitzer C, Seaquist J, Wessels K (2012) Greenness in semi-arid areas across the globe 1981–2007—an Earth Observing Satellite based analysis of trends and drivers. Remote Sens Environ 121:144–158. doi:10.1016/j.rse.2012.01.017

    Article  Google Scholar 

  • Fensholt R, Rasmussen K, Kaspersen P, Huber S, Horion S, Swinnen E (2013) Assessing land degradation/recovery in the African Sahel from long-term earth observation based primary productivity and precipitation relationships. Remote Sens 5(2):664–686

    Article  Google Scholar 

  • Field CB, Randerson JT, Malmström CM (1995) Global net primary production: combining ecology and remote sensing. Remote Sens Environ 51(1):74–88

    Article  Google Scholar 

  • Goetz SJ, Prince SD, Goward SN, Thawley MM, Small J (1999) Satellite remote sensing of primary production: an improved production efficiency modeling approach. Ecol Model 122(3):239–255

    Article  Google Scholar 

  • Goward SN, Huemmrich KF (1992) Vegetation canopy PAR absorptance and the normalized difference vegetation index: an assessment using the SAIL model. Remote Sens Environ 39(2):119–140

    Article  Google Scholar 

  • Higginbottom TP, Symeonakis E (2014) Assessing land degradation and desertification using vegetation index data: current frameworks and future directions. Remote Sens 6(10):9552–9575

    Article  Google Scholar 

  • Horion S, Fensholt R, Tagesson T, Ehammer A (2014) Using earth observation-based dry season NDVI trends for assessment of changes in tree cover in the Sahel. Int J Remote Sens 35(7):2493–2515

    Article  Google Scholar 

  • Ito A, Oikawa T (2002) A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry-matter production theory and plot-scale validation. Ecol Model 151(2):143–176

    Article  Google Scholar 

  • Jong, R., et al. 2012. Trend changes in global greening and browning: contribution of short‐term trends to longerterm change. Global Change Biology, 18(2), 642-655

    Google Scholar 

  • Haywood, J. and Randall, J. (2008). Trending seasonal data with multiple structural breaks. NZ visitor arrivals and the minimal effects of 9/11. Research report 08/10. Victoria, New Zealand, University of Wellington. Vol. p.p. 26

    Google Scholar 

  • Landmann T, Dubovyk O (2014) Spatial analysis of human-induced vegetation productivity decline over eastern Africa using a decade (2001–2011) of medium resolution MODIS time-series data. Int J Appl Earth Obs Geoinf 33:76–82

    Article  Google Scholar 

  • Le Houerou HN (1984) Rain use efficiency: a unifying concept in arid-land ecology. J Arid Environ 7(3):213–247

    Google Scholar 

  • Le QB, Nkonya E, Mirzabaev A (2014) Biomass productivity-based mapping of global land degradation hotspots. ZEF-Discussion Papers on Development Policy (193)

    Google Scholar 

  • Li J, Lewis J, Rowland J, Tappan G, Tieszen L (2004) Evaluation of land performance in Senegal using multi-temporal NDVI and rainfall series. J Arid Environ 59(3):463–480

    Article  Google Scholar 

  • Mbow C, Fensholt R, Nielsen TT, Rasmussen K (2014) Advances in monitoring vegetation and land use dynamics in the Sahel. Geografisk Tidsskrift-Danish J Geogr 114(1):84–91

    Article  Google Scholar 

  • Monteith J, Moss C (1977) Climate and the efficiency of crop production in Britain [and discussion]. Philos Trans Royal Soc London B, Biol Sci 281(980):277–294

    Article  Google Scholar 

  • Nkonya E, Gerber N, Baumgartner P, Von Braun J, De Pinto A, Graw V, Kato E, Kloos J, Walter T (2011) The economics of desertification, land degradation, and drought: toward an integrated global assessment. ZEF Discussion Papers on Development Policy

    Google Scholar 

  • Pettorelli N, Vik JO, Mysterud A, Gaillard J-M, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20(9):503–510

    Article  Google Scholar 

  • Prince SD, Goward SN (1995) Global primary production: a remote sensing approach. J Biogeogr 22:815–835

    Article  Google Scholar 

  • Prince SD, Colstoun D, Brown E, Kravitz L (1998) Evidence from rain‐use efficiencies does not indicate extensive Sahelian desertification. Glob Chang Biol 4(4):359–374

    Article  Google Scholar 

  • Propastin P, Kappas M, Muratova N (2008) Application of geographically weighted regression analysis to assess human-induced land degradation in a dry region of Kazakhstan. In: shaping the change, XXIII FIG congress

    Google Scholar 

  • Purkis SJ, Klemas VV (2011) Remote sensing and global environmental change. Wiley, Oxford

    Book  Google Scholar 

  • Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H (2004) A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54(6):547–560

    Article  Google Scholar 

  • Safriel UN (2007) The assessment of global trends in land degradation. In: Sivakumar MK, Ndiang’ui N (eds) Climate and land degradation, Environmental science and engineering: environmental science. Springer, Berlin, pp 1–38

    Chapter  Google Scholar 

  • Sellers P, Tucker C, Collatz G, Los S, Justice C, Dazlich D, Randall D (1994) A global 1 by 1 NDVI data set for climate studies. Part 2: the generation of global fields of terrestrial biophysical parameters from the NDVI. Int J Remote Sens 15(17):3519–3545

    Article  Google Scholar 

  • Symeonakis E, Drake N (2004) Monitoring desertification and land degradation over sub-Saharan Africa. Int J Remote Sens 25(3):573–592

    Article  Google Scholar 

  • Udelhoven, T.; Stellmes, M. Changes in land surface conditions on the Iberian Peninsula (1989 to 2004) detected by means of time series analysis from hypertemporal remote sensing data, Proceedings of MultiTemp 2007 International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, MultiTemp, Leuven, Belgium; 2007; pp. 1–6

    Google Scholar 

  • Verbesselt J, Hyndman R, Newnham G, Culvenor D (2010a) Detecting trend and seasonal changes in satellite image time series. Remote Sens Environ 114(1):106–115

    Article  Google Scholar 

  • Verbesselt J, Hyndman R, Zeileis A, Culvenor D (2010b) Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens Environ 114(12):2970–2980

    Article  Google Scholar 

  • Vogt JV, Safriel U, Von Maltitz G, Sokona Y, Zougmore R, Bastin G, Hill J (2011) Monitoring and assessment of land degradation and desertification: towards new conceptual and integrated approaches. Land Degrad Dev 22(2):150–165. doi:10.1002/ldr.1075

    Article  Google Scholar 

  • Wessels K (2009) Letter to the editor: comments on ‘Proxy global assessment of land degradation’ by Bai et al. (2008). Soil Use Manag 25:91–92

    Article  Google Scholar 

  • Wessels, K., Van Den Bergh, F. and Scholes, R. 2012. Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sensing of Environment, 125, 10-22

    Google Scholar 

  • Wessels KJ, Prince SD, Frost PE, van Zyl D (2004) Assessing the effects of human-induced land degradation in the former homelands of northern South Africa with a 1 km AVHRR NDVI time-series. Remote Sens Environ 91(1):47–67. doi:http://dx.doi.org/10.1016/j.rse.2004.02.005

  • Wessels KJ, Prince SD, Malherbe J, Small J, Frost PE, VanZyl D (2007) Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J Arid Environ 68(2):271–297

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Yengoh, G.T., Dent, D., Olsson, L., Tengberg, A.E., Tucker, C.J. (2015). Key Issues in the Use of NDVI for Land Degradation Assessment. In: Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales. SpringerBriefs in Environmental Science. Springer, Cham. https://doi.org/10.1007/978-3-319-24112-8_5

Download citation

Publish with us

Policies and ethics