Skip to main content

Part of the book series: SpringerBriefs in Environmental Science ((BRIEFSENVIRONMENTAL))

Abstract

During the past half century, NDVI has been widely used for vegetation mapping and monitoring as well as in the assessment of land-cover and associated changes. This is because remotely sensed satellite-derived datasets provide spatially continuous data (data that are not sampled at individual points) and yield time-series signatures from which temporal patterns, trends, variations, and relationships may be derived (Jacquin et al. 2010). This has not prevented the misuse of NDVIā€”care is needed in the use of any scientific methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achard F, DeFries R, Eva H, Hansen M, Mayaux P, Stibig H (2007) Pan-tropical monitoring of deforestation. Environ Res Lett 2(4):045022

    ArticleĀ  Google ScholarĀ 

  • Anyamba A, Tucker CJ (2012) Historical perspective of AVHRR NDVI and vegetation drought monitoring. Remote Sens Drought: Innovative Monit Approaches 23

    Google ScholarĀ 

  • Bai Z, Dent D, Wu Y, de Jong R (2013) Land degradation and ecosystem services. In: Lal R, Lorenz K, HĆ¼ttl RF, Schneider BU, von Braun J (eds) Ecosystem services and carbon sequestration in the biosphere. Springer, Dordrecht, pp 357ā€“381

    ChapterĀ  Google ScholarĀ 

  • Bandyopadhyay N, Saha AK (2014) Analysing meteorological and vegetative drought in Gujarat. In: Singh M, Singh RB, Hassan I (eds) Climate change and biodiversity: proceedings of IGU Rohtak conference, vol 1. Springer, Japan, pp 61ā€“71

    ChapterĀ  Google ScholarĀ 

  • Bradley BA, Mustard JF (2008) Comparison of phenology trends by land cover class: a case study in the Great Basin, USA. Glob Chang Biol 14(2):334ā€“346

    ArticleĀ  Google ScholarĀ 

  • Conijn J, Bai Z, Bindraban P, Rutgers B (2013) Global changes of net primary productivity, affected by climate and abrupt land use changes since 1981. Towards mapping global soil degradation. Report 2013/01, ISRICā€“World Soil Information, Wageningen. ISRIC Report 1

    Google ScholarĀ 

  • Cook BI, Pau S (2013) A global assessment of long-term greening and browning trends in pasture lands using the GIMMS LAI3g dataset. Remote Sens 5(5):2492ā€“2512

    ArticleĀ  Google ScholarĀ 

  • de Jong R, de Bruin S, de Wit A, Schaepman ME, Dent DL (2011a) Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens Environ 115(2):692ā€“702. doi:http://dx.doi.org/10.1016/j.rse.2010.10.011

  • Farifteh J, Farshad A, George R (2006) Assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma 130(3):191ā€“206

    ArticleĀ  Google ScholarĀ 

  • Field CB, Randerson JT, Malmstrƶm CM (1995) Global net primary production: combining ecology and remote sensing. Remote Sens Environ 51(1):74ā€“88

    ArticleĀ  Google ScholarĀ 

  • Haboudane D, Miller JR, Pattey E, Zarco-Tejada PJ, Strachan IB (2004) Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens Environ 90(3):337ā€“352

    ArticleĀ  Google ScholarĀ 

  • Holben BN (1986) Characteristics of maximum-value composite images from temporal AVHRR data. Int J Remote Sens 7(11):1417ā€“1434

    ArticleĀ  Google ScholarĀ 

  • Jacquin A, Sheeren D, Lacombe J-P (2010) Vegetation cover degradation assessment in Madagascar savanna based on trend analysis of MODIS NDVI time series. Int J Appl Earth Obs Geoinf 12:S3ā€“S10

    ArticleĀ  Google ScholarĀ 

  • Karnieli A, Agam N, Pinker RT, Anderson M, Imhoff ML, Gutman GG, Panov N, Goldberg A (2010) Use of NDVI and land surface temperature for drought assessment: merits and limitations. J Climate 23(3):618ā€“633

    ArticleĀ  Google ScholarĀ 

  • Krupenikov IA, Dent D, Boincean BP (2011) The black earth: ecological principles for sustainable agriculture on chernozem soils, vol 10. Springer, Dordrecht

    Google ScholarĀ 

  • Lambin EF, Ehrlich D (1997) Land-cover changes in sub-Saharan Africa (1982ā€“1991): application of a change index based on remotely sensed surface temperature and vegetation indices at a continental scale. Remote Sens Environ 61(2):181ā€“200

    ArticleĀ  Google ScholarĀ 

  • Liu W, JuĆ”rez RN (2001) ENSO drought onset prediction in northeast Brazil using NDVI. Int J Remote Sens 22(17):3483ā€“3501

    ArticleĀ  Google ScholarĀ 

  • Metternicht G, Zinck J (2003) Remote sensing of soil salinity: potentials and constraints. Remote Sens Environ 85(1):1ā€“20

    ArticleĀ  Google ScholarĀ 

  • Myneni RB, Hall FG, Sellers PJ, Marshak AL (1995) The interpretation of spectral vegetation indexes. IEEE Trans Geosci Remote Sens 33(2):481ā€“486

    ArticleĀ  Google ScholarĀ 

  • Myneni R. B. et al. (2014) Attribution of global vegetation photosynthetic capacity from 1982 to 2014. Global Change Biology (in review)

    Google ScholarĀ 

  • Olsson L, Eklundh L, Ardƶ J (2005) A recent greening of the Sahelā€”trends, patterns and potential causes. J Arid Environ 63(3):556ā€“566

    ArticleĀ  Google ScholarĀ 

  • Pettorelli N, Vik JO, Mysterud A, Gaillard J-M, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20(9):503ā€“510

    ArticleĀ  Google ScholarĀ 

  • Pettorelli N, Safi K, Turner W (2014) Satellite remote sensing, biodiversity research and conservation of the future. Philos Trans R Soc, B 369(1643):20130190

    ArticleĀ  Google ScholarĀ 

  • Prince SD, Goward SN (1995) Global primary production: a remote sensing approach. J Biogeogr 22:815ā€“835

    ArticleĀ  Google ScholarĀ 

  • Rouse J Jr, Haas R, Schell J, Deering D (1974) Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec Publ 351:309

    Google ScholarĀ 

  • Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H (2004) A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54(6):547ā€“560

    ArticleĀ  Google ScholarĀ 

  • Schlerf M, Atzberger C, Hill J (2005) Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sens Environ 95(2):177ā€“194

    ArticleĀ  Google ScholarĀ 

  • Sternberg T, Tsolmon R, Middleton N, Thomas D (2011) Tracking desertification on the Mongolian steppe through NDVI and field-survey data. Int J Digital Earth 4(1):50ā€“64

    ArticleĀ  Google ScholarĀ 

  • Symeonakis E, Drake N (2004) Monitoring desertification and land degradation over sub-Saharan Africa. Int J Remote Sens 25(3):573ā€“592

    ArticleĀ  Google ScholarĀ 

  • Tucker CJ, Nicholson SE (1999) Variations in the size of the Sahara Desert from 1980 to 1997. Ambio 28:587ā€“591

    Google ScholarĀ 

  • Tucker CJ, Pinzon JE, Brown ME, Slayback DA, Pak EW, Mahoney R, Vermote EF, El Saleous N (2005) An extended AVHRR 8ā€km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26(20):4485ā€“4498

    ArticleĀ  Google ScholarĀ 

  • Wessels KJ, Prince SD, Frost PE, van Zyl D (2004) Assessing the effects of human-induced land degradation in the former homelands of northern South Africa with a 1 km AVHRR NDVI time-series. Remote Sens Environ 91(1):47ā€“67. doi:http://dx.doi.org/10.1016/j.rse.2004.02.005

  • Wessels KJ, Prince SD, Malherbe J, Small J, Frost PE, VanZyl D (2007) Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J Arid Environ 68(2):271ā€“297

    ArticleĀ  Google ScholarĀ 

  • Zhang Y, Peng C, Li W, Fang X, Zhang T, Zhu Q, Chen H, Zhao P (2013) Monitoring and estimating drought-induced impacts on forest structure, growth, function, and ecosystem services using remote-sensing data: recent progress and future challenges. Environ Rev 21(2):103ā€“115. doi:10.1139/er-2013-0006

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 The Author(s)

About this chapter

Cite this chapter

Yengoh, G.T., Dent, D., Olsson, L., Tengberg, A.E., Tucker, C.J. (2015). Limits to the Use of NDVI in Land Degradation Assessment. In: Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales. SpringerBriefs in Environmental Science. Springer, Cham. https://doi.org/10.1007/978-3-319-24112-8_4

Download citation

Publish with us

Policies and ethics