Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 521 Accesses

Abstract

The computer industry developed in the course of the last 60 years from its very infancy to one of the biggest global markets. This tremendous evolution was triggered by several historical milestones. In 1947, John Bardeen and Walter Brattain presented the world’s first transistor [1] based on Walter Shockley’s field-effect theory. Their discovery was soon after rewarded by the Nobel Prize in physics and led to the development of today’s semiconductor industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Bardeen, W. Brattain, The transistor. A semi-conductor triode. Phys. Rev. 74, 230–231 (1948)

    Google Scholar 

  2. C. Chiang, C. Fincher, Y. Park, A. Heeger, H. Shirakawa, E. Louis, S. Gau, A. MacDiarmid, Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098–1101 (1977)

    Article  ADS  Google Scholar 

  3. J. Barnaś, A. Fuss, R. Camley, P. Grünberg, W. Zinn, Novel magnetoresistance effect in layered magnetic structures: theory and experiment. Phys. Rev. B 42, 8110–8120 (1990)

    Article  ADS  Google Scholar 

  4. M.N. Baibich, J.M. Broto, A. Fert, F.N. van Dau, F. Petroff, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988)

    Article  ADS  Google Scholar 

  5. S. Datta, B. Das, Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665 (1990)

    Article  ADS  Google Scholar 

  6. G. Szulczewski, S. Sanvito, M. Coey, A spin of their own. Nat. Mater. 8, 693–5 (2009)

    Google Scholar 

  7. D. Gatteschi, R. Sessoli, J. Villain, Molecular Nanomagnets (Oxford University Press, Oxford, 2006)

    Book  Google Scholar 

  8. L. Bogani, W. Wernsdorfer, Molecular spintronics using single-molecule magnets. Nat. Mater. 7, 179–86 (2008)

    Google Scholar 

  9. S. Klyatskaya, J.R.G. Mascarós, L. Bogani, F. Hennrich, M. Kappes, W. Wernsdorfer, M. Ruben, Anchoring of rare-earth-based single-molecule magnets on single-walled carbon nanotubes. J. Am. Chem. Soc. 131, 15143–51 (2009)

    Google Scholar 

  10. R. Sessoli, H.L. Tsai, A.R. Schake, S. Wang, J.B. Vincent, K. Folting, D. Gatteschi, G. Christou, D.N. Hendrickson, High-spin molecules: [Mn12O12(O2CR)16(H2O)4]. J. Am. Chem. Soc. 115, 1804–1816 (1993)

    Article  Google Scholar 

  11. W. Wernsdorfer, Molecular nanomagnets: towards molecular spintronics. Int. J. Nanotechnol. 7, 497 (2010)

    Article  ADS  Google Scholar 

  12. W. Wernsdorfer, M. Murugesu, G. Christou, Resonant tunneling in truly axial symmetry Mn12 single-molecule magnets: sharp crossover between thermally assisted and pure quantum tunneling. Phy. Rev. Lett. 96, 057208 (2006)

    Article  ADS  Google Scholar 

  13. W. Wernsdorfer, Quantum phase interference and parity effects in magnetic molecular clusters. Science 284, 133–135 (1999)

    Article  ADS  Google Scholar 

  14. C. Schlegel, J. van Slageren, M. Manoli, E.K. Brechin, M. Dressel, Direct observation of quantum coherence in single-molecule magnets. Phys. Rev. Lett. 101, 147203 (2008)

    Article  ADS  Google Scholar 

  15. T. Lis, Preparation, structure, and magnetic properties of a dodecanuclear mixed-valence manganese carboxylate. Acta Crystallogr. B Struct. Crystallogr. Cryst. Chem. 36, 2042–2046 (1980)

    Article  Google Scholar 

  16. K. Weighardt, K. Pohl, I. Jibril, G. Huttner, Hydrolysis Products of the Monomeric Amine Complex \(({\rm {C}}_6 {\rm {H}}_{15} {\rm {N}}_3){\rm {FeCl}}_3\): The Structure of the Octameric Iron(III) Cation of \(\{[({\rm {C}}_6{\rm {H}}_{15}{\rm {N}}_3)_6{\rm {Fe}}_8 ({\mu _3}\text{- }{\rm {O}})_2 ({\mu _2}\text{- }{\rm {OH}})_{12}]{\rm {Br}}_7 ({{\rm {H}}_2{\rm {O}}})\}{\rm {Br}}\cdot 8{\rm {H}}_2{\rm {O}}\). Angew. Chem. Int. Ed. Engl. 23, 77–78 (1984)

    Google Scholar 

  17. A. Caneschi, D. Gatteschi, R. Sessoli, A.L. Barra, L.C. Brunel, M. Guillot, Alternating current susceptibility, high field magnetization, and millimeter band EPR evidence for a ground S = 10 state in [Mn12O12(Ch3COO)16(H2O)4].2CH3COOH.4H2O. J. Am. Chem. Soc. 113, 5873–5874 (1991)

    Article  Google Scholar 

  18. A.-L. Barra, P. Debrunner, D. Gatteschi, C.E. Schulz, R. Sessoli, Superparamagnetic-like behavior in an octanuclear iron cluster. Europhys. Lett. (EPL) 35, 133–138 (1996)

    Article  ADS  Google Scholar 

  19. J.R. Friedman, M.P. Sarachik, R. Ziolo, Macroscopic measurement of resonant magnetization tunneling in high-spin molecules. Phys. Rev. Lett. 76, 3830–3833 (1996)

    Article  ADS  Google Scholar 

  20. L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, B. Barbara, Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets. Nature 383, 145–147 (1996)

    Article  ADS  Google Scholar 

  21. S. Bertaina, S. Gambarelli, A. Tkachuk, I.N. Kurkin, B. Malkin, A. Stepanov, B. Barbara, Rare-earth solid-state qubits. Nat. Nanotechnol. 2, 39–42 (2007)

    Google Scholar 

  22. A. Ardavan, O. Rival, J. Morton, S. Blundell, A. Tyryshkin, G. Timco, R. Winpenny, Will spin-relaxation times in molecular magnets permit quantum information processing? Phys. Rev. Lett. 98, 1–4 (2007)

    Article  Google Scholar 

  23. J. Schwöbel, Y. Fu, J. Brede, A. Dilullo, G. Hoffmann, S. Klyatskaya, M. Ruben, R. Wiesendanger, Real-space observation of spin-split molecular orbitals of adsorbed single-molecule magnets. Nat. Commun. 3, 953 (2012)

    Article  ADS  Google Scholar 

  24. M. Urdampilleta, S. Klyatskaya, J.-P. Cleuziou, M. Ruben, W. Wernsdorfer, Supramolecular spin valves. Nat. Mater. 10, 502–6 (2011)

    Google Scholar 

  25. M. Ganzhorn, S. Klyatskaya, M. Ruben, W. Wernsdorfer, Strong spin-phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system. Nat. Nanotechnol. 8, 165–169 (2013)

    Article  ADS  Google Scholar 

  26. R. Vincent, S. Klyatskaya, M. Ruben, W. Wernsdorfer, F. Balestro, Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488, 357–360 (2012)

    Article  ADS  Google Scholar 

  27. E. Burzurí, A.S. Zyazin, A. Cornia, H.S.J. van der Zant, Direct observation of magnetic anisotropy in an individual Fe\(_{4}\) single-molecule magnet. Phys. Rev. Lett. 109, 147203 (2012)

    Google Scholar 

  28. R.P. Feynman, Simulating physics with computers. Int. J. Theoret. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  29. D. Deutsch, Quantum theory, the church-turing principle and the universal quantum computer. Proc. R. Soc. A Math. Phys. Eng. Sci. 400, 97–117 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. P. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings 35th Annual Symposium on Foundations of Computer Science, vol. 26 (IEEE Computer Society Press, 1994), pp. 124–134. ISBN 0-8186-6580-7

    Google Scholar 

  31. L.K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing—STOC ’96 (ACM Press, New York, New York, USA, 1996). ISBN 0897917855

    Google Scholar 

  32. D.P. DiVincenzo, Topics in Quantum Computers, vol. 345. NATO Advanced Study Institute. Ser. E Appl. Sci. vol. 345 (1996)

    Google Scholar 

  33. D. Wineland, R. Drullinger, F. Walls, Radiation-pressure cooling of bound resonant absorbers. Phys. Rev. Lett. 40, 1639–1642 (1978)

    Article  ADS  Google Scholar 

  34. R. Blatt, D. Wineland, Entangled states of trapped atomic ions. Nature 453, 1008–15 (2008)

    Article  ADS  Google Scholar 

  35. J. Clarke, F.K. Wilhelm, Superconducting quantum bits. Nature 453, 1031–42 (2008)

    Article  ADS  Google Scholar 

  36. S.C. Benjamin, J.M. Smith, Driving a hard bargain with diamond qubits. Physics 4, 78 (2011)

    Article  Google Scholar 

  37. A. Morello, Quantum information: atoms and circuits unite in silicon. Nat. Nanotechnol. 8, 233–4 (2013)

    Google Scholar 

  38. S. Thiele, R. Vincent, M. Holzmann, S. Klyatskaya, M. Ruben, F. Balestro, W. Wernsdorfer, Electrical readout of individual nuclear spin trajectories in a single-molecule magnet spin transistor. Phys. Rev. Lett. 111, 037203 (2013)

    Article  ADS  Google Scholar 

  39. L. Dicarlo, M.D. Reed, L. Sun, B.R. Johnson, J.M. Chow, J.M. Gambetta, L. Frunzio, S.M. Girvin, M.H. Devoret, R.J. Schoelkopf, Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574–8 (2010)

    Article  ADS  Google Scholar 

  40. M. Neeley, R.C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A.D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A.N. Cleland, J.M. Martinis, Generation of three-qubit entangled states using superconducting phase qubits. Nature 467, 570–3 (2010)

    Article  ADS  Google Scholar 

  41. D. Loss, D.P. DiVincenzo, Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)

    Article  ADS  Google Scholar 

  42. J.M. Elzerman, R. Hanson, L.H. Willems Van Beveren, B. Witkamp, L.M.K. Vandersypen, L.P. Kouwenhoven, Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–5 (2004)

    Article  ADS  Google Scholar 

  43. J.A.H. Stotz, R. Hey, P.V. Santos, K.H. Ploog, Coherent spin transport through dynamic quantum dots. Nat. Mater. 4, 585–8 (2005)

    Google Scholar 

  44. F.H.L. Koppens, C. Buizert, K.J. Tielrooij, I.T. Vink, K.C. Nowack, T. Meunier, L.P. Kouwenhoven, L.M.K. Vandersypen, Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–71 (2006)

    Article  ADS  Google Scholar 

  45. P. Neumann, J. Beck, M. Steiner, F. Rempp, H. Fedder, P.R. Hemmer, J. Wrachtrup, F. Jelezko, Single-shot readout of a single nuclear spin. Science (New York, N.Y.) 329, 542–4 (2010)

    Article  ADS  Google Scholar 

  46. J.J. Pla, K.Y. Tan, J.P. Dehollain, W.H. Lim, J.J.L. Morton, F.A. Zwanenburg, D.N. Jamieson, A.S. Dzurak, A. Morello, High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013)

    Google Scholar 

  47. M. Urdampilleta, S. Klyatskaya, M. Ruben, W. Wernsdorfer, Landau-Zener tunneling of a single \(Tb^{3+}\) magnetic moment allowing the electronic read-out of a nuclear spin. Phys. Rev. B 87, 195412 (2013)

    Google Scholar 

  48. W. Pfaff, T.H. Taminiau, L. Robledo, H. Bernien, M. Markham, D.J. Twitchen, R. Hanson, Demonstration of entanglement-by-measurement of solid-state qubits. Nat. Phys. 9, 29–33 (2012)

    Article  Google Scholar 

  49. T. Obata, M. Pioro-Ladrière, T. Kubo, K. Yoshida, Y. Tokura, S. Tarucha, Microwave band on-chip coil technique for single electron spin resonance in a quantum dot. Rev. Sci. Instrum. 78, 104704 (2007)

    Article  ADS  Google Scholar 

  50. B.E. Kane, A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Thiele .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Thiele, S. (2016). Introduction. In: Read-Out and Coherent Manipulation of an Isolated Nuclear Spin . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-24058-9_1

Download citation

Publish with us

Policies and ethics