Skip to main content

HAXPES at the Dawn of the Synchrotron Radiation Age

  • Chapter
  • First Online:
Hard X-ray Photoelectron Spectroscopy (HAXPES)

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 59))

  • 2911 Accesses

Abstract

Some of the earliest X-ray Photoemission Spectroscopy (XPS) studies with high-energy X-rays took place in the 1970s as a way of demonstrating the feasibility of using synchrotron radiation from a multi-GeV storage ring to study materials. These developments took place at the SPEAR storage ring at the Stanford Linear Accelerator Center and showed that synchrotron radiation could be tamed but that the technologies of the time would not allow hard X-ray photoemission to become a tool for routine experiments. However, soft X-rays did fulfill that promise and dominated the XPS research for the next several decades with important contributions to the study of surfaces and interfaces . With the advent of second and particularly third generation synchrotron sources, XPS with high-energy X-rays has become a practical tool for the study of bulk properties and buried interfaces. The development of these techniques will be discussed as will the need for both hard and soft X-rays to provide complimentary details on bulk and surface properties of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Kobayashi, Nucl. Instrum. Methods Phys. Res. A 601, 32 (2009)

    Article  ADS  Google Scholar 

  2. G.V. Marr (ed.), Handbook on Synchrotron Radiation: Vacuum Ultraviolet and Soft X-ray Processes (North-Holland, Amsterdam, 1987)

    Google Scholar 

  3. K. Codling, J. Synchrotron Rad. 4, 316 (1997)

    Article  Google Scholar 

  4. D.W. Lynch, J. Synchrotron Rad. 4, 334 (1997)

    Article  Google Scholar 

  5. I.H. Munro, J. Synchrotron Rad. 4, 344 (1997)

    Article  Google Scholar 

  6. T. Sasaki, J. Synchrotron Rad. 4, 359 (1997)

    Article  Google Scholar 

  7. H.E. Huxley, K.C. Holmes, J. Synchrotron Rad. 4, 366 (1997)

    Article  Google Scholar 

  8. H. Winick, A. Bienenstock, Ann. Rev. Nucl. Part. Sci. 28, 33 (1978)

    Article  ADS  Google Scholar 

  9. B. Richter, Rev. Modern Phys. 49, 251 (1977)

    Google Scholar 

  10. M.L. Perl et al., Phys. Rev. Lett. 35, 1489 (1975)

    Article  ADS  Google Scholar 

  11. W.E. Spicer, http://www.slac.stanford.edu/history/images/arc279.jpg

  12. W.E. Spicer, Phys. Rev. 112, 114 (1958)

    Article  ADS  Google Scholar 

  13. C.N. Berglund, W.E. Spicer, Phys. Rev. 4A, A1030 and 1044 (1964)

    Google Scholar 

  14. G.E. Fischer, Study of a Possible Construction Program of a National Synchrotron Radiation Facility at the SLAC Electron-Positron Storage Ring (SPEAR), SPEAR-NOTE-152, December 1972

    Google Scholar 

  15. S. Doniach, K. Hodgson, I. Lindau, P. Pianetta, H. Winick, J. Synchrotron Rad. 4, 380–395 (1997)

    Article  Google Scholar 

  16. R. A. Mack, Report No. CEAL-1027, Cambridge Electron Accelerator Laboratory (1966)

    Google Scholar 

  17. K. Wille, Rep. Prog. Phys. 54, 1005 (1991)

    Article  ADS  Google Scholar 

  18. H. Winick, Proceedings of the IXth International Conference on High Energy Accelerators, Stanford Linear Accelerator Center, Stanford California 1974, p. 685

    Google Scholar 

  19. H. Winick, Synchrotron Radiation Research (Plenum Press, New York, 1980), p. 28

    Book  Google Scholar 

  20. R. Scholl, J. Voss, H. Wiedemann, M. Allen, J.-E. Augustin, A. Boyarski, W. Davies-White, N. Dean, G. Fischer, J.L. Harris, L. Karvonen, R.R. Larsen, M.J. Lee, P. Morton, R. McConnell, J.M. Patterson, J. Rees, B. Richter, A. Sabersky, IEEE Trans. Nucl. Sci. 20, 752 (1973)

    Article  ADS  Google Scholar 

  21. P. Pianetta, I. Lindau, J. Electron Spectrosc. 11, 13 (1977)

    Article  Google Scholar 

  22. B.E. Warren, X-ray Diffraction (Addison-Wesley Publishing Company, Reading, Mass, 1969)

    Google Scholar 

  23. E.W. Hoyt, P. Pianetta, SLAC TN-73-10, Stanford Linear Accelerator Center (1973)

    Google Scholar 

  24. P.W. Palmberg, J. Vac. Sci. Technol. 12, 379 (1975)

    Article  ADS  Google Scholar 

  25. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics Inc., Eden Prairie, 1995), p. 182

    Google Scholar 

  26. A.P. Sabersky, Part. Accel. 5, 199 (1973)

    Google Scholar 

  27. A.P. Banford, The Transport of Charged Particle Beams (E. and F.N. Spon Ltd., London, 1966)

    Google Scholar 

  28. H. Beaumont, M. Hart, J. Phys. E 7, 823 (1974)

    Article  ADS  Google Scholar 

  29. F.C. Brown, R.Z. Bachrach, N. Lien, Nucl. Instrum. Methods 152, 73 (1978)

    Article  ADS  Google Scholar 

  30. H. Petersen, C. Jung, C. Hellwig, W.B. Peatman, W. Gudat, Rev. Sci. Instrum. 66, 1 (1995)

    Article  ADS  Google Scholar 

  31. J.J. Yeh, I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985)

    Article  ADS  Google Scholar 

  32. J.H. Scofield, Lawrence Livermore National Laboratory Report UCRL-51326, 1973

    Google Scholar 

  33. M. Gorgoi, F. Schäfers, S. Svensson, N. Mårtensson, J. Electron Spectrosc. 190, 153 (2013)

    Article  Google Scholar 

  34. S. Tanuma, C.J. Powell, D.R. Penn, Surf. Interface Anal. 36, 1 (2004)

    Article  Google Scholar 

  35. P. Pianetta, I. Lindau, C.M. Garner, W.E. Spicer, Phys. Rev. B 18, 2792 (1978)

    Article  ADS  Google Scholar 

  36. J.S. Escher, in NEA Semiconductor Photoemitters in Semiconductors and Semimetals, Vol. 15, ed. by R.K. Willardson, A.C. Beer (Academic Press, New York, 1981) p. 195

    Google Scholar 

  37. D.-I. Lee, Y. Sun, Z. Liu, S. Sun, S. Peterson, P. Pianetta, J. Appl. Phys. 102, 074909 (2007)

    Article  ADS  Google Scholar 

  38. Y. Sun, Z. Liu, F. Machuca, P. Pianetta, W.E. Spicer, J. Appl. Phys. 97, 124902 (2005)

    Article  ADS  Google Scholar 

  39. R. Kasnavi, Y. Sun, R. Mo, P. Pianetta, P.B. Griffin, J.D. Plummer, J. Appl. Phys. 87, 2255 (2000)

    Article  ADS  Google Scholar 

  40. Z. Hussain, E. Umbach, D.A. Shirley, J. Stohr, J. Feldhaus, Nucl. Instrum. Methods 195, 115 (1982)

    Article  ADS  Google Scholar 

  41. M.H. Hecht, F.J. Grunthaner, B.B. Pate, P. Pianetta, M. Engelhardt, W. Jansen, C. Bryson, Nucl. Instrum. Methods A246, 806 (1986)

    Article  ADS  Google Scholar 

  42. J. Stohr, R. Jaeger, S. Brennan, Surf. Sci. 117, 503 (1982)

    Article  ADS  Google Scholar 

  43. J.C. Woicik, B.B. Pate, P. Pianetta, Phys. Rev. B 39, 8593 (1989)

    Article  ADS  Google Scholar 

  44. C. Weiland, A.K. Rumaiz, P. Lysaght, B.A. Karlin, J.C. Woicik, D.A. Fischer, J. Elect. Spec. and Rel. Phenom. 190, 193 (2013)

    Article  Google Scholar 

  45. R. Reininger, J.C. Woicik, S.L. Hulbert, D.A. Fischer, Nucl. Instr. and Meth. A 649, 49 (2011)

    Article  ADS  Google Scholar 

  46. R. Follath, M. Hävecker, G. Reichardt, K. Lips, J. Bahrdt, F. Schäfers, P. Schmid, J. Phys: Conf. Ser. 425, 212003 (2013)

    Google Scholar 

  47. J.J. Mudd, T.-L. Lee, V. Muñoz-Sanjosé, J. Zúñiga-Pérez, D. Hesp, J.M. Kahk, D.J. Payne, R.G. Egdell, C.F. McConville, Phys. Rev. B 89, 035203 (2014)

    Google Scholar 

  48. J. Sforzini, L. Nemec, T. Denig, B. Stadtmüller, T.-L. Lee, C. Kumpf, S. Soubatch, U. Starke, P. Rinke, V. Blum, F.C. Bocquet, F.S. Tautz, Phys. Rev. Lett. 114, 106804 (2015)

    Article  ADS  Google Scholar 

  49. T.-L. Lee, Diamond Lightsource (private communication)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, which is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The authors are grateful to Tien-Lin Lee of the Diamond Lightsource for providing the description and results from BL I09 at the Diamond Lightsource.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Pianetta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pianetta, P., Lindau, I. (2016). HAXPES at the Dawn of the Synchrotron Radiation Age. In: Woicik, J. (eds) Hard X-ray Photoelectron Spectroscopy (HAXPES). Springer Series in Surface Sciences, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-319-24043-5_3

Download citation

Publish with us

Policies and ethics