Skip to main content

Depth Profiling and Internal Structure Determination of Low Dimensional Materials Using X-ray Photoelectron Spectroscopy

  • Chapter
  • First Online:
Hard X-ray Photoelectron Spectroscopy (HAXPES)

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 59))

Abstract

Properties of any heterostructured material depend critically on the specific composition profile of the constituent elements in the sample. X-ray photoelectron spectroscopy (XPS) is particularly well suited to probe elemental composition of any system. Tunable photon energies, available from any synchrotron centre, allow one to map out the compositional variation through a sample in a manner that can be termed non-invasive and non-destructive depth profiling. In addition, XPS is also able to provide depth resolved electronic structure information by directly mapping out occupied states at and near the Fermi energy. Recent developments at various synchrotron centers, providing access up to very high energy (~10 keV) photons with a good resolution and flux, have made it possible to estimate such compositional and electronic structure depth profiles with a greater accuracy for a wider range of materials. In this book chapter, we describe in detail the use of X-ray photoelectron spectroscopy in a selection of heterostructures, in order to illustrate the power of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Schmid (ed.), Nanoparticles: From Theory to Application, 2nd edn (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010)

    Google Scholar 

  2. H. Weller, Colloidal semiconductor Q-particles: chemistry in the transition region between solid state and molecules. Angew. Chem. Int. Ed. Engl. 32(1), 41–53 (1993)

    Article  Google Scholar 

  3. D. Bera et al., Quantum dots and their multimodal applications: a review. Materials 3(4), 2260–2345 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  4. T. Trindade, P. O’Brien, N.L. Pickett, Nanocrystalline semiconductors: synthesis, properties, and perspectives. Chem. Mater. 13(11), 3843–3858 (2001)

    Article  Google Scholar 

  5. B.O. Dabbousi et al., (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101(46), 9463–9475 (1997)

    Article  Google Scholar 

  6. S. Sapra, D.D. Sarma, Evolution of the electronic structure with size in II–VI semiconductor nanocrystals. Phys. Rev. B 69(12), 125304 (2004)

    Article  ADS  Google Scholar 

  7. C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115(19), 8706–8715 (1993)

    Article  Google Scholar 

  8. R. Viswanatha, D.D. Sarma, Study of the growth of capped ZnO nanocrystals: a route to rational synthesis. Chem. A Eur. J. 12(1), 180–186 (2006)

    Article  Google Scholar 

  9. X. Peng et al., Shape control of CdSe nanocrystals. Nature 404(6773), 59–61 (2000)

    Article  ADS  Google Scholar 

  10. C.J. Murphy, N.R. Jana, Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater. 14(1), 80–82 (2002)

    Article  Google Scholar 

  11. S. Acharya et al., Shape-dependent confinement in ultrasmall zero-, one-, and two-dimensional PbS nanostructures. J. Am. Chem. Soc. 131(32), 11282–11283 (2009)

    Article  Google Scholar 

  12. C. Burda et al., Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105(4), 1025–1102 (2005)

    Article  Google Scholar 

  13. A.R. Tao, S. Habas, P. Yang, Shape control of colloidal metal nanocrystals. Small 4(3), 310–325 (2008)

    Article  Google Scholar 

  14. M.A. Hines, P. Guyot-Sionnest, Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100(2), 468–471 (1996)

    Article  Google Scholar 

  15. X. Peng et al., Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119(30), 7019–7029 (1997)

    Article  Google Scholar 

  16. J.-S. Lee, E.V. Shevchenko, D.V. Talapin, Au−PbS core-shell nanocrystals: plasmonic absorption enhancement and electrical doping via intra-particle charge transfer. J. Am. Chem. Soc. 130(30), 9673–9675 (2008)

    Article  Google Scholar 

  17. P. Reiss, J. Bleuse, A. Pron, Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett. 2(7), 781–784 (2002)

    Article  ADS  Google Scholar 

  18. P. Reiss, M. Protière, L. Li, Core/shell semiconductor nanocrystals. Small 5(2), 154–168 (2009)

    Article  Google Scholar 

  19. D.D. Sarma et al., Origin of the enhanced photoluminescence from semiconductor CdSeS nanocrystals. J. Phys. Chem. Lett. 1(14), 2149–2153 (2010)

    Article  Google Scholar 

  20. P.K. Santra et al., Investigation of the internal heterostructure of highly luminescent quantum dot—quantum well nanocrystals. J. Am. Chem. Soc. 131(2), 470–477 (2008)

    Article  MathSciNet  Google Scholar 

  21. A. Eychmüller, A. Mews, H. Weller, A quantum dot quantum well: CdS/HgS/CdS. Chem. Phys. Lett. 208(1–2), 59–62 (1993)

    Article  ADS  Google Scholar 

  22. D. Battaglia, B. Blackman, X. Peng, Coupled and decoupled dual quantum systems in one semiconductor nanocrystal. J. Am. Chem. Soc. 127(31), 10889–10897 (2005)

    Article  Google Scholar 

  23. S. Sengupta et al., Long-range visible fluorescence tunability using component-modulated coupled quantum dots. Adv. Mater. 23(17), 1998–2003 (2011)

    Article  Google Scholar 

  24. J.J. Li et al., Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 125(41), 12567–12575 (2003)

    Article  Google Scholar 

  25. U. Resch-Genger et al., Quantum dots versus organic dyes as fluorescent labels. Nat. Meth. 5(9), 763–775 (2008)

    Article  Google Scholar 

  26. A.B. Greytak et al., Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions. Chem. Sci. 3(6), 2028–2034 (2012)

    Article  Google Scholar 

  27. J.-S. Lee et al., “Magnet-in-the-semiconductor” FePt−PbS and FePt−PbSe nanostructures: magnetic properties, charge transport, and magnetoresistance. J. Am. Chem. Soc. 132(18), 6382–6391 (2010)

    Article  Google Scholar 

  28. R. Ghosh Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112(4), 2373–2433 (2011)

    Article  Google Scholar 

  29. S. Kim et al., Type-II quantum dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) heterostructures. J. Am. Chem. Soc. 125(38), 11466–11467 (2003)

    Article  Google Scholar 

  30. R.E. Bailey, S. Nie, Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J. Am. Chem. Soc. 125(23), 7100–7106 (2003)

    Article  Google Scholar 

  31. X. Zhong et al., Alloyed Zn x Cd1−x S nanocrystals with highly narrow luminescence spectral width. J. Am. Chem. Soc. 125(44), 13559–13563 (2003)

    Article  Google Scholar 

  32. A. Nag, S. Chakraborty, D.D. Sarma, To dope Mn2+ in a semiconducting nanocrystal. J. Am. Chem. Soc. 130(32), 10605–10611 (2008)

    Article  Google Scholar 

  33. H. Borchert et al., Photoemission study of onion like quantum dot quantum well and double quantum well nanocrystals of CdS and HgS. J. Phys. Chem. B 107(30), 7486–7491 (2003)

    Article  Google Scholar 

  34. S. Sapra et al., Bright white-light emission from semiconductor nanocrystals: by chance and by design. Adv. Mater. 19(4), 569–572 (2007)

    Article  Google Scholar 

  35. F. García-Santamaría et al., Breakdown of volume scaling in auger recombination in CdSe/CdS heteronanocrystals: the role of the core-shell interface. Nano Lett. 11(2), 687–693 (2011)

    Article  ADS  Google Scholar 

  36. N. Tschirner et al., Interfacial alloying in CdSe/CdS heteronanocrystals: a raman spectroscopy analysis. Chem. Mater. 24(2), 311–318 (2011)

    Article  Google Scholar 

  37. W.K. Bae et al., Controlled alloying of the core-shell interface in CdSe/CdS quantum dots for suppression of auger recombination. ACS Nano 7(4), 3411–3419 (2013)

    Article  Google Scholar 

  38. X. Wang et al., Non-blinking semiconductor nanocrystals. Nature 459(7247), 686–689 (2009)

    Article  ADS  Google Scholar 

  39. M. Benoit et al., Towards non-blinking colloidal quantum dots. Nat. Mater. 7(8), 659–664 (2008)

    Article  Google Scholar 

  40. J. Mathon, A. Umerski, Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction. Phys. Rev. B 63(22), 220403 (2001)

    Article  ADS  Google Scholar 

  41. C. Tusche et al., Oxygen-induced symmetrization and structural coherency in Fe/MgO/Fe (001) magnetic tunnel junctions. Phys. Rev. Lett. 95(17), 176101 (2005)

    Article  ADS  Google Scholar 

  42. F. Bonell et al., Spin-polarized electron tunneling in bcc FeCo/MgO/FeCo (001) magnetic tunnel junctions. Phys. Rev. Lett. 108(17), 176602 (2012)

    Article  ADS  Google Scholar 

  43. S. Ikeda et al., Tunnel magnetoresistance of 604 % at 300 K by suppression of Ta diffusion in CoFeB∕MgO∕CoFeB pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett. 93(8) (2008)

    Google Scholar 

  44. S.S.P. Parkin et al., Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3(12), 862–867 (2004)

    Article  ADS  Google Scholar 

  45. H.Y. Hwang et al., Emergent phenomena at oxide interfaces. Nat. Mater. 11(2), 103–113 (2012)

    Article  ADS  Google Scholar 

  46. J. Chakhalian, A.J. Millis, J. Rondinelli, Whither the oxide interface. Nat. Mater. 11(2), 92–94 (2012)

    Article  ADS  Google Scholar 

  47. A. Tsukazaki et al., Quantum hall effect in polar oxide heterostructures. Science 315(5817), 1388–1391 (2007)

    Article  ADS  Google Scholar 

  48. A. Ohtomo, H.Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427(6973), 423–426 (2004)

    Article  ADS  Google Scholar 

  49. N. Reyren et al., Superconducting interfaces between insulating oxides. Science 317(5842), 1196–1199 (2007)

    Article  ADS  Google Scholar 

  50. A. Brinkman et al., Magnetic effects at the interface between non-magnetic oxides. Nat. Mater. 6(7), 493–496 (2007)

    Article  ADS  Google Scholar 

  51. M. Gorgoi et al., The high kinetic energy photoelectron spectroscopy facility at BESSY progress and first results. Nucl. Instrum. Methods Phys. Res. Sect. A 601(1–2), 48–53 (2009)

    Article  ADS  Google Scholar 

  52. R. Knut et al., High energy photoelectron spectroscopy in basic and applied science: Bulk and interface electronic structure. J. Electron Spectrosc. Relat. Phenom. 190(Part B 0), 278–288 (2013)

    Article  Google Scholar 

  53. S. Ueda, Application of hard X-ray photoelectron spectroscopy to electronic structure measurements for various functional materials. J. Electron Spectrosc. Relat. Phenom. 190(Part B 0), 235–241 (2013)

    Article  Google Scholar 

  54. E. Ikenaga et al., Development of high lateral and wide angle resolved hard X-ray photoemission spectroscopy at BL47XU in SPring-8. J. Electron Spectrosc. Relat. Phenom. 190(Part B 0), 180–187 (2013)

    Article  Google Scholar 

  55. D. Céolin et al., Hard X-ray photoelectron spectroscopy on the GALAXIES beamline at the SOLEIL synchrotron. J. Electron Spectrosc. Relat. Phenom. 190(Part B 0), 188–192 (2013)

    Article  Google Scholar 

  56. H. Wadati, A. Fujimori, Hard X-ray photoemission spectroscopy of transition-metal oxide thin films and interfaces. J. Electron Spectrosc. Relat. Phenom. 190(Part B 0), 222–227 (2013)

    Article  Google Scholar 

  57. R. Claessen et al., Hard X-ray photoelectron spectroscopy of oxide hybrid and heterostructures: a new method for the study of buried interfaces. New J. Phys. 11, 125007 (2009)

    Article  ADS  Google Scholar 

  58. F. Borgatti et al., Interfacial and bulk electronic properties of complex oxides and buried interfaces probed by HAXPES. J. Electron Spectrosc. Relat. Phenom. 190(Part B 0), 228–234 (2013)

    Article  Google Scholar 

  59. C. Caspers et al., Chemical stability of the magnetic oxide EuO directly on silicon observed by hard X-ray photoemission spectroscopy. Phys. Rev. B 84(20), 205217 (2011)

    Article  ADS  Google Scholar 

  60. M. Gorgoi et al., Hard X-ray high kinetic energy photoelectron spectroscopy at the KMC-1 beamline at BESSY. Eur. Phys. J. Special Topics 169(1), 221–225 (2009)

    Article  ADS  Google Scholar 

  61. C. Weiland et al., NIST high throughput variable kinetic energy hard X-ray photoelectron spectroscopy facility. J. Electron Spectrosc. Relat. Phenom. 190(Part B 0), 193–200 (2013)

    Article  Google Scholar 

  62. S. Hufner, Photoelectron Spectroscopy, Principles and Applications (Springer, Berlin, New York, 1995)

    Book  Google Scholar 

  63. K. Siegbahn et al., ESCA: atomic, molecular, and solid state structure studies by means of electron spectroscopy. Nova Acta Regiae Soc. Sci. Ups. Ser. IV, 1967. 20

    Google Scholar 

  64. A. Fujimori et al., Core-level photoemission measurements of the chemical potential shift as a probe of correlated electron systems. J. Electron Spectrosc. Relat. Phenom. 124(2–3), 127–138 (2002)

    Article  Google Scholar 

  65. E. Hao et al., Synthesis and optical properties of CdSe and CdSe/CdS nanoparticles. Chem. Mater. 11(11), 3096–3102 (1999)

    Article  Google Scholar 

  66. I. Tunc et al., XPS characterization of Au (Core)/SiO2 (Shell) nanoparticles. J. Phys. Chem. B 109(16), 7597–7600 (2005)

    Article  Google Scholar 

  67. P.A. Mangrulkar et al., Throwing light on platinized carbon nanostructured composites for hydrogen generation. Energy Environ. Sci. 7(12), 4087–4094 (2014)

    Article  Google Scholar 

  68. H. Jensen et al., XPS and FTIR investigation of the surface properties of different prepared titania nano-powders. Appl. Surf. Sci. 246(1–3), 239–249 (2005)

    Article  ADS  Google Scholar 

  69. J.S. Owen et al., Reaction chemistry and ligand exchange at cadmium–selenide nanocrystal surfaces. J. Am. Chem. Soc. 130(37), 12279–12281 (2008)

    Article  Google Scholar 

  70. A. Roy et al., Photoemission study of porous silicon. Appl. Phys. Lett. 61(14), 1655–1657 (1992)

    Article  ADS  Google Scholar 

  71. A. Roy, D.D. Sarma, A.K. Sood, Spectroscopic studies on quantum dots of PbI2. Spectrochim. Acta Part A 48(11–12), 1779–1787 (1992)

    Article  ADS  Google Scholar 

  72. J. Jasieniak, P. Mulvaney, From Cd-rich to Se-rich—the manipulation of CdSe nanocrystal surface stoichiometry. J. Am. Chem. Soc. 129(10), 2841–2848 (2007)

    Article  Google Scholar 

  73. J.E.B. Katari, V.L. Colvin, A.P. Alivisatos, X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface. J. Phys. Chem. 98(15), 4109–4117 (1994)

    Article  Google Scholar 

  74. U. Winkler et al., Detailed investigation of CdS nanoparticle surfaces by high-resolution photoelectron spectroscopy. Chem. Phys. Lett. 306(1–2), 95–102 (1999)

    Article  ADS  Google Scholar 

  75. S.K. Kulkarni et al., Investigations on chemically capped CdS, ZnS and ZnCdS nanoparticles. Appl. Surf. Sci. 169–170, 438–446 (2001)

    Article  Google Scholar 

  76. K.B. Subila et al., Luminescence properties of CdSe quantum dots: role of crystal structure and surface composition. J. Phys. Chem. Lett. 4(16), 2774–2779 (2013)

    Article  Google Scholar 

  77. V. Vijayakrishnan et al., Metal-insulator transitions in metal clusters: a high-energy spectroscopy study of palladium and silver clusters. J. Phys. Chem. 96(22), 8679–8682 (1992)

    Article  Google Scholar 

  78. B.M. Reddy, B. Chowdhury, P.G. Smirniotis, An XPS study of the dispersion of MoO3 on TiO2–ZrO2, TiO2–SiO2, TiO2–Al2O3, SiO2–ZrO2, and SiO2–TiO2–ZrO2 mixed oxides. Appl. Catal. A 211(1), 19–30 (2001)

    Article  Google Scholar 

  79. N. Kruse, S. Chenakin, XPS characterization of Au/TiO2 catalysts: Binding energy assessment and irradiation effects. Appl. Catal. A 391(1–2), 367–376 (2011)

    Article  Google Scholar 

  80. A.V. Baranov et al., Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots. Phys. Rev. B 68(16), 165306 (2003)

    Article  ADS  Google Scholar 

  81. F. Todescato et al., Investigation into the heterostructure interface of CdSe-based core-shell quantum dots using surface-enhanced raman spectroscopy. ACS Nano 7(8), 6649–6657 (2013)

    Article  Google Scholar 

  82. W.W. Yu et al., Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15(14), 2854–2860 (2003)

    Article  Google Scholar 

  83. S. Tougaard, Surface nanostructure determination by X-ray photoemission spectroscopy peak shape analysis. J. Vac. Sci. Technol. A 14(3), 1415–1423 (1996)

    Article  ADS  Google Scholar 

  84. I. Doron-Mor et al., Controlled surface charging as a depth-profiling probe for mesoscopic layers. Nature 406(6794), 382–385 (2000)

    Article  ADS  Google Scholar 

  85. B.J. Tyler, D.G. Castner, B.D. Ratner, Regularization: a stable and accurate method for generating depth profiles from angle-dependent XPS data. Surf. Interface Anal. 14(8), 443–450 (1989)

    Article  Google Scholar 

  86. S. Hajati, S. Tougaard, Non-Destructive depth profiling by XPS peak shape analysis. J. Surf. Anal. 15(3), 220–224 (2009)

    Google Scholar 

  87. S.H. Yang et al., Depth-resolved photoemission spectroscopy with soft X-ray standing waves. J. Electron Spectrosc. Relat. Phenom. 114–116, 1089–1095 (2001)

    Article  Google Scholar 

  88. D.D. Sarma et al., X-ray photoelectron spectroscopy: a unique tool to determine the internal heterostructure of nanoparticles. Chem. Mater. 25(8), 1222–1232 (2013)

    Article  ADS  Google Scholar 

  89. E. Holmström et al., Sample preserving deep interface characterization technique. Phys. Rev. Lett. 97(26), 266106 (2006)

    Article  ADS  Google Scholar 

  90. M. Sing et al., Profiling the interface electron gas of LaAlO3/SrTiO3 heterostructures with hard X-ray photoelectron spectroscopy. Phys. Rev. Lett. 102(17), 176805 (2009)

    Article  ADS  Google Scholar 

  91. W.A.M. Aarnink, A. Weishaupt, A. van Silfhout, Angle-resolved X-ray photoelectron spectroscopy (ARXPS) and a modified Levenberg-Marquardt fit procedure: a new combination for modeling thin layers. Appl. Surf. Sci. 45(1), 37–48 (1990)

    Article  ADS  Google Scholar 

  92. C. Weiland et al., Nondestructive compositional depth profiling using variable-kinetic energy hard X-ray photoelectron spectroscopy and maximum entropy regularization. Surf. Interface Anal. 46(6), 407–417 (2014)

    Article  Google Scholar 

  93. T.A. Carlson, G.E. McGuire, Study of the X-ray photoelectron spectrum of tungsten—tungsten oxide as a function of thickness of the surface oxide layer. J. Electron Spectrosc. Relat. Phenom. 1(2), 161–168 (1972)

    Article  Google Scholar 

  94. L. Kumar, D.D. Sarma, S. Krummacher, XPS study of the room temperature surface oxidation of zirconium and its binary alloys with tin, chromium and iron. Appl. Surf. Sci. 32(3), 309–319 (1988)

    Article  ADS  Google Scholar 

  95. J. Nanda, B.A. Kuruvilla, D.D. Sarma, Photoelectron spectroscopic study of CdS nanocrystallites. Phys. Rev. B 59(11), 7473–7479 (1999)

    Article  ADS  Google Scholar 

  96. J. Nanda, D.D. Sarma, Photoemission spectroscopy of size selected zinc sulfide nanocrystallites. J. Appl. Phys. 90(5), 2504–2510 (2001)

    Article  ADS  Google Scholar 

  97. P. Sen et al., An electron spectroscopic study of the surface oxidation of glassy and crystalline Cu–Zr alloys. J. Phys. F: Met. Phys. 14(2), 565–577 (1984)

    Article  ADS  Google Scholar 

  98. D.A. Shirley, High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 5(12), 4709–4714 (1972)

    Article  ADS  Google Scholar 

  99. R. Hesse et al., Comparative study of the modelling of the spectral background of photoelectron spectra with the Shirley and improved Tougaard methods. J. Electron Spectrosc. Relat. Phenom. 186, 44–53 (2013)

    Article  Google Scholar 

  100. S. Tanuma, C.J. Powell, D.R. Penn, Calculations of electron inelastic mean free paths (IMFPS). IV. Evaluation of calculated IMFPs and of the predictive IMFP formula TPP-2 for electron energies between 50 and 2000 eV. Surf. Interface Anal. 20(1), 77–89 (1993)

    Article  Google Scholar 

  101. C.S. Fadley, S. Nemšák, Some future perspectives in soft- and hard-X-ray photoemission. J. Electron Spectrosc. Relat. Phenom. 195, 409–422 (2014)

    Article  Google Scholar 

  102. B. Pal, S. Mukherjee, D. D. Sarma, Probing internal structures using hard X-ray photoelectron spectroscopy (HAXPES). J. Electron Spectrosc. Relat. Phenom. 200, (2015). doi: 10.1016/j.elspec.2015.06.005

    Google Scholar 

  103. S. Tanuma, C.J. Powell, D.R. Penn, Calculations of electron inelastic mean free paths for 31 materials. Surf. Interface Anal. 11(11), 577–589 (1988)

    Article  Google Scholar 

  104. S. Tanuma, C.J. Powell, D.R. Penn, Calculations of electron inelastic mean free paths. III. Data for 15 inorganic compounds over the 50–2000 eV range. Surf. Interface Anal. 17(13), 927–939 (1991)

    Article  Google Scholar 

  105. C. Cancellieri et al., Interface fermi states of LaAlO3/SrTiO3 and related heterostructures. Phys. Rev. Lett. 110(13), 137601 (2013)

    Article  ADS  Google Scholar 

  106. J.J. Yeh, I. Lindau, Atomic subshell photoionization cross sections and asymmetry parameters: 1 ⩽ Z ⩽ 103. At. Data Nucl. Data Tables 32(1), 1–155 (1985)

    Article  ADS  Google Scholar 

  107. J. H. Scofield, Theoretical photoionization cross sections from 1 to 1500 keV. Lawrence Livermore National Laboratory Rep (1973)

    Google Scholar 

  108. R. Hesse, P. Streubel, R. Szargan, Improved accuracy of quantitative XPS analysis using predetermined spectrometer transmission functions with UNIFIT 2004. Surf. Interface Anal. 37(7), 589–607 (2005)

    Article  Google Scholar 

  109. S. Sapra et al., Unraveling internal structures of highly luminescent PbSe nanocrystallites using variable-energy synchrotron radiation photoelectron spectroscopy. J. Phys. Chem. B 110(31), 15244–15250 (2006)

    Article  Google Scholar 

  110. D. D. Sarma, P. Sen, XPS and Auger studies of the surface oxidation of Manganese. Proc. Indian Natn. Sci. Acad. 49(A)(3) (1983)

    Google Scholar 

  111. P. Sen, M.S. Hegde, C.N.R. Rao, Surface oxidation of cadmium, indium, tin and antimony by photoelectron and Auger spectroscopy. Appl. Surf. Sci. 10(1), 63–74 (1982)

    Article  ADS  Google Scholar 

  112. D.D. Sarma, M.S. Hegde, C.N.R. Rao, Study of surface oxidation of rare-earth metals by photoelectron spectroscopy. J. Chem. Soc. Faraday Trans. 2: Mol. Chem. Phys. 77(9), 1509–1520 (1981)

    Article  Google Scholar 

  113. M. Ayyoob, D.D. Sarma, XPS and UVPES studies of the surface oxidation of Gd and Yb. Ind. J. Chem. 22 (A) (1983)

    Google Scholar 

  114. H. Borchert et al., Relations between the photoluminescence efficiency of CdTe nanocrystals and their surface properties revealed by synchrotron XPS. J. Phys. Chem. B 107(36), 9662–9668 (2003)

    Article  Google Scholar 

  115. F. Bernardi et al., Unraveling the formation of core-shell structures in nanoparticles by S-XPS. J. Phys. Chem. Lett. 1(6), 912–917 (2010)

    Article  Google Scholar 

  116. K. Huang et al., Internal structure of InP/ZnS nanocrystals unraveled by high-resolution soft X-ray photoelectron spectroscopy. ACS Nano 4(8), 4799–4805 (2010)

    Article  Google Scholar 

  117. S. Mukherjee et al., Determination of internal structures of heterogeneous nanocrystals using variable-energy photoemission spectroscopy. J. Phys. Chem. C 118(28), 15534–15540 (2014)

    Article  Google Scholar 

  118. S. Mukherjee et al., Distribution and nature of charge carriers in LaAlO3-SrTiO3 oxide heterostructures. Unpublished results

    Google Scholar 

  119. M. Paul et al., Probing the interface of Fe3O4GaAs thin films by hard X-ray photoelectron spectroscopy. Phys. Rev. B 79(23), 233101 (2009)

    Article  ADS  Google Scholar 

  120. E. Slooten et al., Hard X-ray photoemission and density functional theory study of the internal electric field in SrTiO3/LaAlO3 oxide heterostructures. Phys. Rev. B 87(8), 085128 (2013)

    Article  ADS  Google Scholar 

  121. C. Weiland et al., Hard X-ray photoelectron spectroscopy study of As and Ga out-diffusion in In0.53Ga0.47As/Al2O3 film systems. Appl. Phys. Lett. 101(6), 061602 (2012)

    Article  ADS  Google Scholar 

  122. A.A. Greer et al., Observation of boron diffusion in an annealed Ta/CoFeB/MgO magnetic tunnel junction with standing-wave hard X-ray photoemission. Appl. Phys. Lett. 101(20), 202402 (2012)

    Article  ADS  Google Scholar 

  123. A.K. Rumaiz et al., Boron migration due to annealing in CoFeB/MgO/CoFeB interfaces: a combined hard X-ray photoelectron spectroscopy and X-ray absorption studies. Appl. Phys. Lett. 99(22), 222502 (2011)

    Article  ADS  Google Scholar 

  124. X. Kozina et al., A nondestructive analysis of the B diffusion in Ta–CoFeB–MgO–CoFeB–Ta magnetic tunnel junctions by hard X-ray photoemission. Appl. Phys. Lett. 96(7), 072105 (2010)

    Article  ADS  Google Scholar 

  125. S. Mukherjee et al., Role of boron diffusion in CoFeB/MgO magnetic tunnel junctions. Phys. Rev. B 91(8), 085311 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Sarma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mukherjee, S., Santra, P.K., Sarma, D.D. (2016). Depth Profiling and Internal Structure Determination of Low Dimensional Materials Using X-ray Photoelectron Spectroscopy. In: Woicik, J. (eds) Hard X-ray Photoelectron Spectroscopy (HAXPES). Springer Series in Surface Sciences, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-319-24043-5_13

Download citation

Publish with us

Policies and ethics