Skip to main content

Neuroendocrine Basis of the Hypothalamus–Pituitary–Ovary Axis Aging

  • Chapter
  • First Online:
Frontiers in Gynecological Endocrinology

Part of the book series: ISGE Series ((ISGE))

  • 1081 Accesses

Abstract

Female reproductive senescence is a lifelong process that begins before birth and culminates with ovarian follicular depletion and menopause. For many years, the menopausal transition was viewed to be simply the end product of accelerated oocyte depletion. Moreover, hypothalamic–pituitary–ovary (HPO) axis dysfunction was thought to reflect a compensatory response to the gradual decline in the number and quality of remaining oocytes. However, recent studies challenge the conventional belief that ovarian aging is the sole determinant of reproductive senescence and raise questions about the sequence of pathophysiological events that initiate reproductive aging. Moreover, aberrant responsiveness of the hypothalamic–pituitary–adrenal (HPA) axis to estrogen feedback and the subsequent generation of abnormal patterns of gonadotropin release may in itself accelerate ovarian follicular exhaustion. Understanding the mechanisms that propel women into menopause may offer opportunities for interventions that delay menopause-related increases in disease morbidity and thus improve overall quality of life for aging women.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brann DW, Mahesh VB (2005) The aging reproductive neuroendocrine axis. Steroids 70(4):273–283

    Article  CAS  PubMed  Google Scholar 

  2. Klein NA, Battaglia DE, Fujimoto VY et al (1996) Reproductive aging: accelerated ovarian follicular development associated with a monotropic folliclestimulating hormone rise in normal older women. J Clin Endocrinol Metab 81(3):1038–1045

    CAS  PubMed  Google Scholar 

  3. Tom SE, Mishra GD (2013) Current topics in menopause: a life course approach to reproductive aging. Bentham Science Publishers Sharjah, Sharjah/Oak Park

    Google Scholar 

  4. Schoenaker DA, Jackson CA, Rowlands JV et al (2014) Socioeconomic position, lifestyle factors and age at natural menopause: a systematic review and meta-analyses of studies across six continents. Int J Epidemiol 43:1542–1562

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nichols HB et al (2006) From menarche to menopause: trends among US Women born from 1912 to 1969. Am J Epidemiol 164:1003–1011

    Article  PubMed  Google Scholar 

  6. Dratva J et al (2009) Is age at menopause increasing across Europe? Results on age at menopause and determinants from two population-based studies. Menopause 16:385–394

    Article  PubMed  Google Scholar 

  7. Flint MP (1997) Secular trends in menopause age. J Psychosom Obstet Gynaecol 18:65–72

    Article  CAS  PubMed  Google Scholar 

  8. Kok HS, van Asselt KM, van der Schouw YT et al (2005) Genetic studies to identify genes underlying menopausal age. Human reproduction update 11:483–493

    Article  CAS  PubMed  Google Scholar 

  9. van Asselt KM et al (2004) Heritability of menopausal age in mothers and daughters. Fertil Steril 82:1348–1351

    Article  PubMed  Google Scholar 

  10. Torgerson DJ, Thomas RE, Reid DM (1997) Mothers and daughters menopausal ages: is there a link? Eur J Obstet Gynecol Reprod Biol 74:63–66

    Article  CAS  PubMed  Google Scholar 

  11. Crame DW, Xu H, Harlow BL (1995) Family history as a predictor of early menopause. Fertil Steril 64:740–745

    Article  Google Scholar 

  12. van Asselt KM et al (2004) Linkage analysis of extremely discordant and concordant sibling pairs identifies quantitative trait loci influencing variation in human menopausal age. Am J Hum Genet 74:444–453

    Article  PubMed  PubMed Central  Google Scholar 

  13. Murabito JM, Yang Q, Fox CS et al (2005) Genome-wide linkage analysis to age at natural menopause in a community-based sample: the Framingham Heart Study. Fertil Steril 84:1674–1679

    Article  CAS  PubMed  Google Scholar 

  14. Ferrarini E et al (2013) Clinical characteristics and genetic analysis in women with premature ovarian insufficiency. Maturitas 74:61–67

    Article  CAS  PubMed  Google Scholar 

  15. Nelson LM (2009) Clinical practice. Primary ovarian insufficiency. N Engl J Med 360:606–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nejat EJ, Chervenak JL (2010) The continuum of ovarian aging and clinicopathologies associated with the menopausal transition. Maturitas 66:187–190

    Article  PubMed  Google Scholar 

  17. Broekmans FJ, Soules MR, Fauser BC (2009) Ovarian aging: mechanisms and clinical consequences. Endocr Rev 30:465–493

    Article  CAS  PubMed  Google Scholar 

  18. Burger HG, Hale GE, Robertson DM et al (2007) Review of hormonal changes during the menopausal transition: focus on findings from the Melbourne Women’s Midlife Health Project. Hum Reprod Update 13:559–565

    Article  CAS  PubMed  Google Scholar 

  19. Wise PM (1999) Neuroendocrine modulation of the “menopause”: insights into the aging brain. Am J Physiol 277:E965–E970

    CAS  PubMed  Google Scholar 

  20. Downs JL, Wise PM (2009) The role of the brain in female reproductive aging. Mol Cell Endocrinol 299:32–38

    Article  CAS  PubMed  Google Scholar 

  21. Santoro N et al (2003) Impaired folliculogenesis and ovulation in older reproductive aged women. J Clin Endocrinol Metab 88:5502–5509

    Article  CAS  PubMed  Google Scholar 

  22. Archer DF et al (2011) Menopausal hot flushes and night sweats: where are we now? Climacteric 14:515–528

    Article  CAS  PubMed  Google Scholar 

  23. Al-Safi ZA, Santoro N (2014) Menopausal hormone therapy and menopausal symptoms. Fertil Steril 101:905–915

    Article  CAS  PubMed  Google Scholar 

  24. Vivian-Taylor J, Hickey M (2014) Menopause and depression: is there a link? Maturitas 79:142–146

    Article  PubMed  Google Scholar 

  25. Bay-Jensen AC et al (2013) Role of hormones in cartilage and joint metabolism: understanding an unhealthy metabolic phenotype in osteoarthritis. Menopause 20:578–586

    PubMed  Google Scholar 

  26. Labrie F (2004) Adrenal androgens and intracrinology. Semin Reprod Med 22:299–309

    Article  CAS  PubMed  Google Scholar 

  27. Chalbot S, Morfin R (2006) Dehydroepiandrosterone metabolites and their interactions in humans. Drug Metabol Drug Interact 2:21–23

    Google Scholar 

  28. Baulieu EE (1997) Neurosteroids: of the nervous system, by the nervous system, for the nervous system. Recent Prog Horm Res 5:21–32

    Google Scholar 

  29. Dong Y, Zheng P (2012) Dehydroepiandrosterone sulphate: action and mechanism in the brain. J Neuroendocrinol 24(1):215–224

    Article  CAS  PubMed  Google Scholar 

  30. Bergeron R, de Montigny C, Debonnel G (1996) Potentiation of neuronal NMDA response induced by dehydroepiandrosterone and its suppression by progesterone: effects mediated via sigma receptors. J Neurosci 16:1193–1202

    CAS  PubMed  Google Scholar 

  31. Compagnone NA, Mellon SH (2000) Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol 21:1–56

    Article  CAS  PubMed  Google Scholar 

  32. Maurice T, Gregoire C, Espallergues J (2006) Neuro(active)steroids actions at the neuromodulatory sigma1 (sigma1) receptor: biochemical and physiological evidences, consequences in neuroprotection. Pharmacol Biochem Behav 84:581–597

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Simoncini MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 International Society of Gynecological Endocrinology

About this chapter

Cite this chapter

Giannini, A., Genazzani, A.R., Simoncini, T. (2016). Neuroendocrine Basis of the Hypothalamus–Pituitary–Ovary Axis Aging. In: Genazzani, A., Tarlatzis, B. (eds) Frontiers in Gynecological Endocrinology. ISGE Series. Springer, Cham. https://doi.org/10.1007/978-3-319-23865-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23865-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23864-7

  • Online ISBN: 978-3-319-23865-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics