Skip to main content

Electronic Applications of Styrene–Butadiene Rubber and Its Composites

  • Chapter
  • First Online:
Flexible and Stretchable Electronic Composites

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

Stretchable materials in electronics industry have attracted tremendous interest because it can maintain high strain. Therefore, soft materials find application in electromagnetic interference (EMI) shielding, piezoelectric materials, actuators, pressure sensors, capacitive sensors and energy storage devices and solar cells. This chapter provides an outlook into the electrical properties and electronic applications of styrene–butadiene rubber (SBR) composites in the presence of various types of conducting fillers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen G, Zhao W (2010) Rubber/graphite nanocomposites, chapter 19. In: Rubber nanocomposites: preparation, properties and applications. Wiley, Singapore

    Google Scholar 

  2. Pramanik PK, Khastgir D, Saha TN (1991) Electro magnetic interference shielding by conductive nitrile rubber composites containing carbon fillers. J Elastomers Plast 23(4):345–361

    Article  CAS  Google Scholar 

  3. Mattson B, Stenberg B (1992) Electrical conductivity of thermo-oxidatively-degraded EPDM rubber. Rubber Chem Technol 65(2):315–328

    Article  CAS  Google Scholar 

  4. Chen X, Jiang Y, Wu Z, Li D, Yang J (2000) Morphology and gas-sensitive properties of polymer based composite films. Sens Actuators B Chem 66(1):37–39

    Article  CAS  Google Scholar 

  5. Blow CM, Hepburn C (1982) Rubber technology and manufacture, 2nd edn. Butterworth Scientific, UK

    Google Scholar 

  6. Yao S, Zhu Y (2015) Nanomaterial-enabled stretchable conductors: strategies. Mater Devices Adv Mater. doi:10.1002/adma.201404446

    Google Scholar 

  7. Cheng T, Zhang Y, Lai WY, Huang W (2015) Stretchable thin- film electrodes for flexible electronics with high deformability and stretchability. Adv Mater. doi:10.1002/adma.201405864

    Google Scholar 

  8. Marshall JE, Gallagher S, Terentjev EM, Smoukov SK (2014) Anisotropic colloidal micro muscles from liquid crystal elastomers. J Am Chem Soc 136:474–479

    Article  CAS  Google Scholar 

  9. Kaltenbrunner M, Sekitani T, Reeder J, Yokota T, Kuribara K, Tokuhara T, Drack M, Schwodiauer R, Graz I, Gogonea SB, Bauer S, Someya T (2013) An ultra-lightweight design for imperceptible plastic electronics. Nature 499:458–463

    Article  CAS  Google Scholar 

  10. Lipomi DJ, Tee BC-K, Vosgueritchian M, Bao ZN (2011) Stretchable organic solar cells. Adv Mater 23(15):1771–1775

    Article  CAS  Google Scholar 

  11. Osman HM, Abdel Chani SA, Madkour TM, Mohammed AR (2000) Stress relaxation in carbon black loaded butyl rubber. J Appl Polym Sci 77:1067–1076

    Article  CAS  Google Scholar 

  12. Chodak I, Omastova M, Pionteck J (2001) Relation between electrical and mechanical properties of conducting polymer composites. J Appl Polym Sci 82:1903–1906

    Article  CAS  Google Scholar 

  13. Omastova M, Podhradska S, Prokes J, Janigova I, Stejskal J (2003) Thermal ageing of conducting polymeric composites. Polym Degrad Stab 82:251–256

    Article  CAS  Google Scholar 

  14. Krupa I, Chodak I (2001) Physical properties of thermoplastic/graphite composites. Eur Polym J 37:2159–2168

    Article  CAS  Google Scholar 

  15. Das NC, Chaki TK, Khastgir D (2002) Effect of processing parameters, applied pressure and temperature on the electrical resistivity of rubber-based conductive composites. Carbon 40:807–816

    Article  CAS  Google Scholar 

  16. Sichel EK (1982) Carbon black polymer composites. Marcel Dekker, NY, p 214

    Google Scholar 

  17. Shioyama H, Akita T (2003) A new route to carbon nanotubes. Carbon 41:179–181

    Article  CAS  Google Scholar 

  18. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Article  CAS  Google Scholar 

  19. Mietta JL, Jorge GE, Perez OE, Maeder T, Negri RM (2013) Superparamagnetic anisotropic elastomer connectors exhibiting reversible magneto-piezoresistivity. Sens Actuators A Phys 192:34–41

    Article  CAS  Google Scholar 

  20. Mietta JL, Ruiz MM, Antonel PS, Perez OE, Butera A, Jorge GE, Negri RM (2012) Anisotropic magnetoresistance and piezoresistivity in structured Fe3O4-silver particles in PDMS elastomers at room temperature. Langmuir 28:6985–6996

    Article  CAS  Google Scholar 

  21. Lee S, Shin S, Lee S, Seo J, Lee J, Son S, Cho HJ, Algadi H, Al-Sayari S, Kim DE, Lee T (2015) Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv Funct Mater. doi:10.1002/adfm.201500628

    Google Scholar 

  22. Sung Y, El-Tantawy F (2002) Novel smart polymeric composites for thermistors and electromagnetic wave shielding effectiveness from TiC loaded styrene-butadiene rubber. Macromol Res 10(6):345–358

    Article  CAS  Google Scholar 

  23. Gwaily SE, Nasr GM, Badawy MM (2001) Thermal and electrical properties of irradiated styrene butadiene rubber-metal composites. Egypt J Sol 24(2):193–205

    Google Scholar 

  24. Dannenberg EM (1978) In encyclopedia of chemical technology, vol 4, 3rd edn. Wiley, NY, p 631

    Google Scholar 

  25. Lyon F (1985) Encyclopedia of polymer science and engineering, vol 2, 2nd edn. Wiley, NY, p 623

    Google Scholar 

  26. Al-Hartomy OA, Al-Ghamd A, Dishovsky N, Malinova P, El-Tantawy F (2012) Some factors determining the volume resistivity of filled natural rubber-based nanocomposites. Prog Rubber Plast Recycl Technol 28:95–110

    CAS  Google Scholar 

  27. Luo H, Kluppel M, Schneider H (2004) Study of filled SBR elastomers using NMR and mechanical measurements. Macromolecules 37:8000–8009

    Article  CAS  Google Scholar 

  28. Morsy RM, Ismaiel MN, Yehia AA (2013) Conductivity studies on acrylonitrile butadiene rubber loaded with different types of carbon blacks. Int J Mater Meth Technol 1(4):22

    Google Scholar 

  29. Podhradska S, Prokes J, Omastova M, Chodak I (2009) Stability of electrical properties of carbon black-filled rubbers. J Appl Polym Sci 112:2918–2924

    Article  CAS  Google Scholar 

  30. Janzen J (1975) On the critical conductive filler loading in antistatic composites. J Appl Phys 46:966

    Article  Google Scholar 

  31. Kawazoe M, Ishida H (2008) A new concept for nanoparticle distribution in SBR/NBR blend solution and films via molecular confinement. Macromolecules 41:2931–2937

    Article  CAS  Google Scholar 

  32. Gubbels F, Jerome R, Vanlathem E, Deltour R, Blacher S, Brouers F (1998) Kinetic and thermodynamic control of the selective localization of carbon black at the interface of immiscible polymer blends. Chem Mater 10:1227–1235

    Article  CAS  Google Scholar 

  33. Cheah K, Forsyth M, Simon GP (2000) Processing and morphological development of carbon black filled conducting blends using a binary host of poly (styrene co-acrylonitrile) and poly (styrene). J Polym Sci Part B Polym Phys 38:3106–3119

    Article  CAS  Google Scholar 

  34. Zhang C, Han HF, Yi XS, Asai S, Sumita M (1999) Selective location of the filler and double percolation of Ketjenblack filled high density polyethylene/isotactic polypropylene blends compos. Interfaces 6:227–236

    CAS  Google Scholar 

  35. Feng JY, Chan CM (1998) Carbon black-filled immiscible blends of poly (vinylidene fluoride) and high density polyethylene: electrical properties and morphology. Polym Eng Sci 38:1649–1657

    Article  CAS  Google Scholar 

  36. Mamunya YP (1999) Morphology and percolation conductivity of polymer blends containing carbon black. Macromol Sci Phys 38:615–622

    Article  Google Scholar 

  37. Diaz R, Diani J, Gilormini P (2014) Physical interpretation of the Mullins softening in a carbon-black filled SBR. Poymer 55:4942–4947

    CAS  Google Scholar 

  38. Wang L, Zhao S (2010) Study on the structure-mechanical properties relationship and antistatic characteristics of SSBR composites filled with SiO2/CB. J Appl Polym Sci 118:338–345

    Article  CAS  Google Scholar 

  39. Karasek L, Meissner B, Asai S, Sumita M (1996) Percolation concept: polymer-filler gel formation, electrical conductivity and dynamic electrical properties of carbon-black-filled rubbers. Polym J 28(2):121–126

    Article  CAS  Google Scholar 

  40. He M, Yuan LX, Zhang WX, Hu XL, Huang YH (2011) Enhanced cyclability for sulfur cathode achieved by a water-soluble binder. J Phys Chem C 115:15703–15709

    Article  CAS  Google Scholar 

  41. Peddini SK, Bosnyak CP, Henderson NM, Ellison CJ, Paul DR (2014) Nanocomposites from styrene-butadiene rubber (SBR) and multiwall carbon nanotubes (MWCNT) part 1: morphology and rheology. Polymer 55:258–270

    Article  CAS  Google Scholar 

  42. Hu GJ, Zhao CG, Zhang SM, Yang MS, Wang ZG (2006) Low percolation thresholds of electrical conductivity and rheology in poly (ethylene terephthalate) through the networks of multi-walled carbon nanotubes. Polymer 47(1):480–488

    Article  CAS  Google Scholar 

  43. Abdel-Goad M, Potscheke J (2005) Rheological characterization of melt processed polycarbonate-multiwalled carbon nanotube composites. J Nonnewton Fluid 128(1):2–6

    Article  CAS  Google Scholar 

  44. Alig I, Skipa T, Lellinger D, Potscheke P (2008) Destruction and formation of a carbon nanotube network in polymer melts: rheology and conductivity spectroscopy. Polymer 49(16):3524–3532

    Article  CAS  Google Scholar 

  45. Das A, Stockelhuber KW, Jurk R, Fritzsche J, Kluppel M, Heinrich G (2009) Coupling activity of ionic liquids between diene elastomers and multi-walled carbon nanotubes. Carbon 47(14):3313–3321

    Article  CAS  Google Scholar 

  46. McNally T, Ptscheke P, Halley P, Murphy M, Martin D, Bell SEJ et al (2005) Polyethylene multiwalled carbon nanotube composites. Polymer 46(9):8222–8232

    Article  CAS  Google Scholar 

  47. Li Y, Shimizu H (2009) Toward a stretchable, elastic, and electrically conductive nanocomposite: morphology and properties of poly [styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotube composites fabricated by high-shear processing. Macromolecules 42:2587–2593

    Article  CAS  Google Scholar 

  48. Pedroni LG, Araujo JR, Felisberti MI, Nogueira F (2012) Nanocomposites based on MWCNT and styrene–butadiene–styrene block copolymers: effect of the preparation method on dispersion and polymer–filler interactions. Compo Sci Technol 72:1487–1492

    Article  CAS  Google Scholar 

  49. Tsuchiya K, Sakai A, Nagaoka T, Uchida K, Furukawa T, Yajima H (2011) High electrical performance of carbon nanotubes/rubber composites with low percolation threshold prepared with a rotation–revolution mixing technique. Compos Sci Technol 71:1098–1104

    Article  CAS  Google Scholar 

  50. Das A, Kasaliwal GR, Jurk R, Boldt R, Fischer D, Stockelhuber KW, Heinrich G (2012) Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: a comparative study. Compo Sci Technol 72:1961–1967

    Article  CAS  Google Scholar 

  51. Araby S, Saber N, Ma X, Kawashima N, Kang H, Shen H, Zhang L, Xu J, Majewski P, Ma J (2015) Implication of multi-walled carbon nanotubes on polymer/graphene composites. Mater Desig 65:690–699

    Article  CAS  Google Scholar 

  52. Dreyer RD, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  53. Wang G, Yang J, Park J, Gou X, Wang B, Liu H et al (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195

    Article  CAS  Google Scholar 

  54. Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232

    Article  CAS  Google Scholar 

  55. Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F et al (2008) Graphene-based liquid crystal device. Nano Lett 8:1704–1708

    Article  Google Scholar 

  56. www.wikipedia.org/wiki/Graphene

  57. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  58. Kim H, Abdala AA, Maosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530

    Article  CAS  Google Scholar 

  59. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375

    Article  CAS  Google Scholar 

  60. Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670

    Article  CAS  Google Scholar 

  61. Sadasivuni KK, Ponnamma D, Thomas S, Grohens Y (2014) Evolution from graphite to graphene elastomer composites. Prog Poym Sci 39:749–780

    Article  CAS  Google Scholar 

  62. Araby S, Meng Q, Zhang L, Zaman I, Majewski P, Ma J (2015) Elastomeric composites based on carbon nanomaterials. Nanotechnology 26:112001

    Article  Google Scholar 

  63. Ozbas B, O’Neill CD, Register RA, Aksay IA, Prud’homme RK, Adamson DH (2012) Multifunctional elastomer nanocomposites with functionalized graphene single sheets. J Polym Sci Part B Polym Phy 50:910–916

    Article  CAS  Google Scholar 

  64. Steurer P, Wissert R, Thomann R, Muelhaupt R (2009) Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol Rapid Commun 30:316–327

    Article  CAS  Google Scholar 

  65. Liu X, Kuang W, Guo B (2015) Preparation of rubber/graphene oxide composites with in-situ interfacial design. Polymer 56:553–562

    Article  CAS  Google Scholar 

  66. Xing W, Tang M, Wu J, Huang G, Li H, Lei Z, Fu X, Li H (2014) Multifunctional properties of graphene/rubber nanocomposites fabricated by a modified latex compounding method. Compo Sci Technol 99:67–74

    Article  CAS  Google Scholar 

  67. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem 80:1339

    Article  CAS  Google Scholar 

  68. Schopp S, Thomann R, Ratzsch KF, Kerling S, Altstadt V, Mulhaupt R (2013) Functionalized graphene and carbon materials as components of styrene-butadiene rubber nanocomposites prepared by aqueous dispersion blending. Macromol Mater Eng 299(3):319–329

    Article  Google Scholar 

  69. Ozbas B, O’Neill CD, Register RA, Aksay IA, Prud’homme RK, Adamson DH (2012) Multifunctional elastomer nanocomposites with functionalized graphene single sheets. J Polym Sci Part B Polym Phy 50:910–916

    Article  CAS  Google Scholar 

  70. Song SH, Jeong HK, Kang YG (2010) Preparation and characterization of exfoliated graphite and its styrene butadiene rubber nanocomposites. J Indust Eng Chem 16:1059–1065

    Article  CAS  Google Scholar 

  71. Araby S, Zhang L, Kuan HC, Dai JB, Majewski P, Ma J (2013) A novel approach to electrically and thermally conductive elastomers using graphene. Polymer 54:3663–3670

    Article  CAS  Google Scholar 

  72. Zhang H, Wang C, Zhang Y (2015) Preparation and properties of styrene-butadiene rubber nanocomposites blended with carbon black-graphene hybrid filler. J Appl Polym Sci. doi:10.1002/APP.41309

    Google Scholar 

  73. Fugetsu B, Sano E, Yu H, Mori K, Tanaka T (2010) Graphene oxide as dyestuffs for the creation of electrically conductive fabrics. Carbon 48:3340–3345

    Article  CAS  Google Scholar 

  74. Sherman RD, Middelman LM, Jacobs SM (1983) Electron transport processes in conductor-filled polymers. Polym Eng Sci 23(1):36–46

    Article  Google Scholar 

  75. Ruiz MM, Marchi MC, Perez OE, Jorge GE, Fascio M, D’Accorso N, Negri RM (2015) Structured elastomeric submillimeter films displaying magneto and piezo resistivity. Polym Phy 53:574–586

    Article  CAS  Google Scholar 

  76. Ivanekyo D, Toshchevikov VP, Saphiannikova M, Heinrich G (2011) Magneto-sensitive elastomers in a homogeneous magnetic field: a regular rectangular lattice model. Macromol Theory Simul 20:411–424

    Article  Google Scholar 

  77. Shahrivar K, De Vicente J (2013) Thermoresponsive polymer-based magneto-rheological (MR) composites as a bridge between MR fluids and MR elastomers. Soft Matter 9:11451–11456

    Article  CAS  Google Scholar 

  78. Danas K, Kankanala SV, Triantafyllidis N (2012) Experiments and modeling of iron-particle-filled magnetorheological elastomers. J Mech Phys Solids 60:120–138

    Article  CAS  Google Scholar 

  79. Bica I, Liu YD, Choi HJ (2012) Magnetic field intensity effect on plane electric capacitor characteristics and viscoelasticity of magnetorheological elastomer. Colloid Polym Sci 290:1115–1122

    Article  CAS  Google Scholar 

  80. Mietta JL, Jorge GE, Negri RM (2014) A flexible strain gauge exhibiting reversible piezoresistivity based on an anisotropic magnetorheological polymer. Smart Mater Struct 23:85026–85038

    Article  Google Scholar 

  81. Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45:574

    Article  Google Scholar 

  82. Schettini ARA, Khastigir D, Soares BG (2012) Microwave dielectric properties and EMI shielding effectiveness of poly (styrene-b-styrene-butadiene-styrene) copolymer filled with PAni, Dodecylbenzenesulfonic acid and carbon black. Polym Eng Sci 52(9):2041–2048

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranimol Stephen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stephen, R., Thomas, S. (2016). Electronic Applications of Styrene–Butadiene Rubber and Its Composites. In: Ponnamma, D., Sadasivuni, K., Wan, C., Thomas, S., Al-Ali AlMa'adeed, M. (eds) Flexible and Stretchable Electronic Composites. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-23663-6_9

Download citation

Publish with us

Policies and ethics