Skip to main content

Electronic Applications of Polydimethylsiloxane and Its Composites

  • Chapter
  • First Online:
Flexible and Stretchable Electronic Composites

Abstract

Stretchable or elastic electronics is based on building electronic circuits or devices on stretchable substrates and its potential applications include skin sensors for robotics, wearable devices, and flesh-like biodevices. As the physically and chemically stable silicone rubber, polydimethylsiloxane (PDMS) has a unique flexibility with a shear elastic modulus 250 kPa and lowest glass transition temperature among other polymers; it is widely used to fabricate stretchable electronic materials. In addition, PDMS also possesses clean room processability, low curing temperature, high flexibility, possibility to change its functional groups, high compressibility, and very low change in elasticity versus temperature and time. This chapter addresses the applicability of patterned PDMS nanocomposites in electronics along with its advantages and limitations. Major areas such as sensors, actuators, light-emitting diodes, piezoelectrics, dielectrics, electromagnetic radiation shields, transistors, and supercapacitors are covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Someya T, Kato Y, Sekitani T, Lba S, Noguchi Y, Murase Y, Kawaguchi H, Sakurai T, Whitesides GMA (2005) large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc Natl Acad Sci USA 102:12321

    Article  CAS  Google Scholar 

  2. Carta R, Jourand P, Hermans B, Thone J, Brosteaux D, Vervust T, Bossuyt F, Axisa F, Vanfleteren J, Puers R (2009) Design and implementation of advanced systems in a flexible-stretchable technology for biomedical applications. Sens Actuators A 156:79–87

    Article  CAS  Google Scholar 

  3. Lacour SP, Wagner S, Huang ZY, Suo Z (2003) Stretchable gold conductors on elastomeric substrates. Appl Phys Lett 82:2404–2406

    Article  CAS  Google Scholar 

  4. Khang DY, Jiang HQ, Huang Y, Rogers JA (2006) A stretchable form of single crystal silicon for high-performance electronics on rubber substrates. Science 311:208–212

    Article  CAS  Google Scholar 

  5. Kim DH, Ahn JH, Choi WM, Kim HS, Kim TH, Song J, Huang YY, Liu Z, Lu C, Rogers JA (2008) Stretchable and foldable silicon integrated circuits. Science 320:507

    Article  CAS  Google Scholar 

  6. Rogers JA, Huang Y (2009) A curvy, stretchy future for electronics. Proc Natl Acad Sci USA 106:10875

    Article  CAS  Google Scholar 

  7. Rogers JA, Someya T, Huang Y (2010) Materials and mechanics for stretchable electronics. Science 327:1603

    Article  CAS  Google Scholar 

  8. Gray DS, Tien J, Chen CS (2004) High-conductivity elastomeric electronics. Adv Mater 16:393–397

    Article  CAS  Google Scholar 

  9. Vanfleteren J, Gonzalez M, Bossuyt F, Hsu YY, Vervust T, De Wolf I, Jablonski M (2012) Printed circuit board technology inspired stretchable circuits. MRS Bull 37:254–260

    Article  Google Scholar 

  10. Jeong GS, Baek DH, Jung HC, Song JH, Moon JH, Hong SW, Kim IY, Lee SH (2012) Solderable and electroplatable flexible electronic circuit on a porous stretchable elastomer. Nat Commun 3:977

    Article  Google Scholar 

  11. Park J, Wang S, Li M, Ahn C, Hyun JK, Kim DS, Kim DK, Rogers JA, Huang Y, Jeon S (2012) Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors. Nat Commun 3:916

    Article  Google Scholar 

  12. Zhu S, So JH, Mays R, Desai S, Barnes WR, Pourdeyhimi B, Dickey MD (2013) Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv Funct Mater 23:2308–2314

    Article  CAS  Google Scholar 

  13. Niu XZ, Peng SL, Liu LY, Wen WJ, Sheng P (2007) Characterizing and patterning of PDMS-based conducting composites. Adv Mater 19:2682–2686

    Article  CAS  Google Scholar 

  14. Xu F, Zhu Y (2012) Highly conductive and stretchable silver nanowire conductors. Adv Mater 24:5117–5122

    Article  CAS  Google Scholar 

  15. Park M, Im J, Shin M, Min Y, Park J, Cho H, Park S, Shim MB, Jeon S, Chung DY, Bae J, Park J, Jeong U, Kim K (2012) Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat Nanotechnol 7:803–809

    Article  CAS  Google Scholar 

  16. Rosset S, Niklaus M, Dubois P, Shea HR (2009) Metal ion implantation for the fabrication of stretchable electrodes on elastomers. Adv Funct Mater 19:470–478

    Article  CAS  Google Scholar 

  17. Siegel AC, Bruzewicz DA, Weibel DB, Whitesides GM (2007) Microsolidics: fabrication of three-dimensional metallic microstructures in poly(dimethylsiloxane). Adv Mater 19:727

    Article  CAS  Google Scholar 

  18. Ponnamma D, Sadasivuni KK, Strankowski M, Guo Q, Thomas S (2013) Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application. Soft Matter 9:10343

    Article  CAS  Google Scholar 

  19. Ponnamma D, Guo Q, Krupa I, Al-Maadeed MAS, Varughese KT, Thomas S, Sadasivuni KK (2015) Graphene and graphitic derivative filled polymer composites as potential sensors. Phys Chem Chem Phys 17:3954–3981

    Article  CAS  Google Scholar 

  20. Kafy A, Sadasivuni KK, Kim HC, Akther A, Kim J (2015) Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites. Phys Chem Chem Phys 17:5923–5931

    Article  CAS  Google Scholar 

  21. Sadasivuni KK, Kafy A, Zhai L, Ko HU, Mun S, Kim J (2015) Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing. Small 11:994–1002

    Article  CAS  Google Scholar 

  22. Jones J, Lacour SP, Wagner S, Suo Z (2004) Stretchable wavy metal interconnects. J Vac Sci Technol A 22:1723

    Article  CAS  Google Scholar 

  23. Adrega T, Lacour SP (2010) Stretchable gold conductors embedded in PDMS and patterned by photolithography: fabrication and electromechanical characterization. J Micromech Microeng 20:055025

    Article  Google Scholar 

  24. Sadasivuni KK, Ponnamma D, Kim J, Thomas S (eds) (2015) Graphene-based polymer nanocomposites in electronics. Springer, New York

    Google Scholar 

  25. Sadasivuni KK, Ponnamma D, Thomas S, Grohens Y (2014) Evolution from graphite to graphene elastomer composites. Prog Polym Sci 39:749–780

    Article  CAS  Google Scholar 

  26. Loher T, Seckel M, Vieroth R, Dils C, Kallmayer C, Ostmann A, Aschenbrenner R, Reichl H (2009) Stretchable electronic systems: Realization and applications. In: IEEE 11th electronics packing technology Conference, p 893

    Google Scholar 

  27. Hosokawa M, Nogi K, Naito M, Yokoyama T (2007) Nanoparticle technology handbook, 1st edn. Elsevier, Oxford

    Google Scholar 

  28. Brosteaux D, Axisa F, Gonzalez M, Vanfleteren J (2007) Design and fabrication of elastic interconnections for stretchable electronic circuits. IEEE Electron Device Lett 28:552

    Article  Google Scholar 

  29. Kim DH, Song J, Choi WM, Kim HS, Kim RH, Liu Z, Huang YY, Hwang KC, Zhang YW, Rogers JA (2008) Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Natl Acad Sci USA 105:18675

    Article  CAS  Google Scholar 

  30. Lacour SP, Jones J, Wagner S, Li T, Suo Z (2005) Stretchable interconnects for elastic electronic surfaces. Proc IEEE 93:1459

    Article  CAS  Google Scholar 

  31. Deepalekshmi P, Visakh PM, Mathew AP, Chandra AK, Thomas S (2013) Advances in Elastomers: their composites and nanocomposites: state of art, new challenges and opportunities. Advances in elastomers II. Springer, Berlin, pp 1–9

    Google Scholar 

  32. Simpson TRE, Parbhoo B, Keddie JL (2003) The dependence of the rate of crosslinking in poly(dimethylsiloxane) on the thickness of coatings. Polymer 44:4829–4838

    Article  CAS  Google Scholar 

  33. Romeo A, Liu QH, Suo ZG, Lacour SP (2013) Elastomeric substrates with embedded stiff platforms for stretchable electronics. Appl Phys Lett 102:131904

    Article  Google Scholar 

  34. Graz IM, Cotton DPJ, Robinson A, Lacour SP (2011) Silicone substrate with in situ strain relief for stretchable thin-film transistors. Appl Phys Lett 98:124101

    Article  Google Scholar 

  35. Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H (2004) Room temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432:488–492

    Article  CAS  Google Scholar 

  36. Wang ZL, Wu W (2012) Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew Chem Int Ed 51:11700–11721

    Article  CAS  Google Scholar 

  37. Rogers JA, Nuzzo RG (2005) Recent progress in soft lithography. Mater Today 8:50–56

    Article  CAS  Google Scholar 

  38. Romanowsky MB, Heymann M, Abate AR, Krummel AT, Fraden S, Weitz DA (2010) Functional patterning of PDMS microfluidic devices using integrated chemo-masks. Lab Chip 10:1521–1524

    Article  CAS  Google Scholar 

  39. Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov M, Dogan S, Avrutin V, Cho SJ, MorkocH AA (2005) comprehensive review of ZnO materials and devices. J Appl Phys 98:041301

    Article  Google Scholar 

  40. Deepalekshmi P, Chirayil CJ, Sadasivuni KK, Somasekharan L, Yaragalla S, Abraham J, Thomas S (2013) Special purpose elastomers: synthesis, structure-property relationship, compounding, processing and applications. Advances in elastomers I. Springer, Berlin, pp 47–82

    Google Scholar 

  41. Brunchi CE, Filimon A, Cazacu M, Ioan S (2009) Properties of Some poly(siloxane)s for optical applications. High Perform Polym 21:31–47

    Article  CAS  Google Scholar 

  42. Merkel TC, Bondar VI, Nagai K, Freeman BD, Pinnau IJ (2000) Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). J Polym Sci B 38:415–434

    Article  CAS  Google Scholar 

  43. Lotters JC, Olthuis W, Veltink PH, Bergveld PJ (1997) The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J Micromech Microeng 7:145–147

    Article  CAS  Google Scholar 

  44. Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5:210–218

    Article  CAS  Google Scholar 

  45. Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75:6544–6554

    Article  CAS  Google Scholar 

  46. Sadasivuni KK, Mohiuddin M, Gao X, Akther A, Mun S, Kim J (2015) Cellulose/PDMS hybrid material for actuating lens. SPIE smart structures and materials + nondestructive evaluation and health monitoring. International Society for Optics and Photonics, pp 94340K–94340K

    Google Scholar 

  47. Hanson DE (2004) An explicit polymer and node network model to compute micromechanical properties of silica-filled polydimethylsiloxane. Polymer 45:1055–1062

    Article  CAS  Google Scholar 

  48. Gross P, Kartalov E, Scherer A, Weiner L (2007) Applications of microfluidics for neuronal studies. J NeurolSci 252:135–143

    Google Scholar 

  49. Yeon J, Park J (2007) Microfluidic cell culture systems for cellular analysis. Bio Chip J 1:17–27

    Google Scholar 

  50. Meyvantsson I, Beebe D (2008) Cell culture models in microfluidic systems. Annu Rev Anal Chem 1:423–449

    Article  CAS  Google Scholar 

  51. Sadasivuni KK, Ponnamma D, Kasak P, Krupa I, Al-Maadeed MASA (2014) Designing dual phase sensing materials from polyaniline filled styrene-isopreneestyrene composites. Mater Chem Phys 147(3):1029–1036

    Article  CAS  Google Scholar 

  52. Kumar SK, Castro M, Pillin I, Feller JF, Thomas S, Grohens Y (2013) Simple technique for the simultaneous determination of solvent diffusion coefficient in polymer by Quantum Resistive Sensors and FT-IR spectroscopy. Polym Adv Technol 24:487–494

    Article  CAS  Google Scholar 

  53. Sadasivuni KK, Castro M, Saiter A, Delbreilh L, Feller JF, Thomas S, Grohens Y (2013) Development of poly(isobutylene-co-isoprene)/reduced graphene oxide Nanocomposites for barrier, dielectric and sensing applications. Mater Lett 96:109–112

    Article  Google Scholar 

  54. Ponnamma D, Sadasivuni KK, Grohens Y, Guo Q, Thomas S (2014) Carbon nanotubes based elastomer composites—an approach towards multifunctional materials. J Mater Chem C 2:8446–8485

    Article  CAS  Google Scholar 

  55. Hou Y, Wang D, Zhang XM, Zhao H, Zha JW, Dang ZM (2013) Positive piezoresistive behavior of electrically conductive alkyl-functionalized graphene/polydimethylsilicone nanocomposites. J Mater Chem C 1:515

    Article  CAS  Google Scholar 

  56. Shiohara A, Langer J, Polavarapu L, Liz-Marzan LM (2014) Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing. Nanoscale 6:9817

    Article  CAS  Google Scholar 

  57. Xu W, Allen MG (2013) Deformable strain sensors based on patterned MWCNTs/polydimethylsiloxane composites. J Polym Sci, Part B: Polym Phys 51:1505–1512

    Article  CAS  Google Scholar 

  58. Lottersy C, Olthuis W, Veltink PH, Bergveld P (1997) The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J Micromech Microeng 7:145–147

    Article  Google Scholar 

  59. Joo Y, Byun J, Seong N, Ha J, Kim H, Kim S, Kim T, Im H, Kim D, Hong Y (2015) Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor. Nanoscale 7:6208

    Article  CAS  Google Scholar 

  60. Zhao W, Yuge P, Juanxu J, Yuanchen A (2009) Selective detection of hypertoxic organophosphates pesticides via PDMS composite based acetylcholinesterase-inhibition biosensor. Environ Sci Technol 43:6724–6729

    Article  CAS  Google Scholar 

  61. Liu J, Motta N, Lee S (2012) Ultraviolet photodetection of flexible ZnO nanowire sheets in polydimethylsiloxane polymer. Beilstein J Nanotechnol 3:353–359

    Article  CAS  Google Scholar 

  62. Loomis J, King B, Burkhead T, Xu P, Bessler N, Terentjev E, Panchapakesan B (2012) Graphene-nanoplatelet-based photomechanical actuators. Nanotechnology 23:045501

    Article  Google Scholar 

  63. Sadasivuni KK, Kafy A, Zhai L, Ko HU, Mun SC, Kim J (2015) Multifunctional and smart graphene filled polymers as piezoelectrics and actuators. Graphene-based polymer nanocomposites in electronics, p 67

    Google Scholar 

  64. Chen L, Liu C, Liu K, Meng C, Hu C, Wang J, Fan S (2011) High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites. ACS Nano 5(3):1588–1593

    Article  CAS  Google Scholar 

  65. Sohail S, Das S, Biswas K (2015) Effect of interface layer capacitance on polydimethylsiloxane in electrowetting-on-dielectric actuation. J Exp Phys 2015:426435–426444

    Google Scholar 

  66. Xue C, Li J, Zhang Q, Zhang Z, Hai Z, Gao L, Feng R, Tang J, Liu J, Zhang W, Sun D (2015) A novel arch-shape nanogenerator based on piezoelectric and triboelectric mechanism for mechanical energy harvesting. Nanomaterials 5:36–46

    Article  CAS  Google Scholar 

  67. Nayak S, Chaki TK, Khastgir D (2014) Development of flexible piezoelectric poly(dimethylsiloxane)—BaTiO3 nanocomposites for electrical energy harvesting. Ind Eng Chem Res 53:14982–14992

    Article  CAS  Google Scholar 

  68. Chun J, Kang NR, Kim JY, Noh MS, Kang CY, Choi D, Kim SW, Wang ZL, Bai JM (2015) Highly anisotropic power generation in piezo electric hemispheres composed stretchable composite film for self-powered motion sensor. Nano Energy 11:1–10

    Article  CAS  Google Scholar 

  69. Ibrahim IAM, Zikry AAF, Sharaf MA, EMark J, Jacob K, Jasiuk IM, Tannenbaumn R (2012) Dielectric behavior of silica/poly(dimethylsiloxane) nanocomposites. nano size effects. Mater Sci Eng 40: 012011

    Google Scholar 

  70. Klonos P, Sulym IY, Borysenko MV, Gun’ko VM, Kripotou S, Kyritsis A, Pissis P (2015) Interfacial interactions and complex segmental dynamics in systems based on silica-polydimethylsiloxane core shell nanoparticles: dielectric and thermal study. Polymer 58:9–21

    Article  CAS  Google Scholar 

  71. Lee J, Kim W, Kim W (2014) Stretchable carbon nanotube/ion-gel supercapacitors with high durability realized through interfacial microroughness. ACS Appl Mater Interfaces 6:13578–13586

    Article  CAS  Google Scholar 

  72. Yukse R, Sarioba Z, Cirpan A, Hiralal P, Unalan HE (2014) Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes. ACS Appl Mater Interfaces 6:15434–15439

    Google Scholar 

  73. Chen T, Peng H, Durstock M, Dai L (2014) High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets. Sci Rep 4

    Google Scholar 

  74. Romasanta LJ, Hernández M, López-Manchado MA, Verdejo R (2011) Functionalisedgraphene sheets as effective high dielectric constant fillers. Nanoscale Res Lett 6:508

    Article  Google Scholar 

  75. Pisanello F, Paolis RD, Lorenzo D, Guardia P, Nitti S, Monti G, Fragouli D, Athanassiou A, Tarricone L, Manna L, Vittorio MD, Martiradonna L (2013) GHz properties of magnetophoretically aligned iron-oxide nanoparticle doped polymers. ACS Appl Mater Interfaces 5:2908–2914

    Article  CAS  Google Scholar 

  76. Huang K, Gan Y, Wang Q, Jiang X (2015) Enhanced light extraction efficiency of integrated LEDs devices with the taper holes microstructures arrays. Opt Laser Technol 72:134–138

    Article  CAS  Google Scholar 

  77. Leem JW, Lee SH, Guan XY, Yu JS (2015) Inverted tetrahedron-pyramidal micropatterned polymer films for boosting light output power in flip-chip light-emitting diodes. Opt Express 23(8):9612

    Article  Google Scholar 

  78. Chen CC, Lin HY, Li CH, Wu JH, Tu ZY, Lee LL, Jeng MS, Lin CC, Jou JH, Kuo HC (2014) Enabling Lambertian-like warm white organic light-emitting diodes with a yellow phosphor embedded flexible film. Int J Photoenergy 2014:851371–851377. doi:10.1155/2014/851371

    Google Scholar 

  79. Jung SW, Choi JS, Koo JB, Park CW, Na BS, Oh JY, Lim SC, Lee SS, Chu HY, Yoon SM (2015) Flexible nonvolatile organic ferroelectric memory transistors fabricated on polydimethylsiloxane elastomer. Org Electron 16:46–53

    Article  CAS  Google Scholar 

  80. Miller MS, O’Kane JC, Niec A, Carmichael RS, Carmichael TB (2013) Silver nanowire/optical adhesive coatings as transparent electrodes for flexible electronics. ACS Appl Mater Interfaces 5:10165–10172

    Article  CAS  Google Scholar 

  81. Loomis J, Fan X, Khosravi F, Xu P, Fletcher M, Cohn RW, Panchapakesan B (2013) Graphene/elastomer composite-based photo-thermal nanopositioners. Sci Rep 3:1900

    Article  Google Scholar 

  82. Chen T, Xue Y, Roy AK, Dai L (2013) Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano 8:1039–1046

    Article  Google Scholar 

  83. Yoon SM, Jung SW, Yang S, Park SHK, Yu BG, Ishiwara H (2011) Bending characteristics of ferroelectric poly (vinylidene fluoride trifluoroethylene) capacitors fabricated on flexible polyethylene naphthalate substrate. Curr Appl Phys 11(3):S219–S224

    Article  Google Scholar 

  84. Wang X, Gu Y, Xiong Z, Cui Z, Zhang T (2014) Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv Mater 26:1336–1342

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishor Kumar Sadasivuni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sadasivuni, K.K., Ponnamma, D., Cabibihan, JJ., AlMa’adeed, M.AA. (2016). Electronic Applications of Polydimethylsiloxane and Its Composites. In: Ponnamma, D., Sadasivuni, K., Wan, C., Thomas, S., Al-Ali AlMa'adeed, M. (eds) Flexible and Stretchable Electronic Composites. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-23663-6_7

Download citation

Publish with us

Policies and ethics