Skip to main content

Electronic Applications of Polyurethane and Its Composites

  • Chapter
  • First Online:
Flexible and Stretchable Electronic Composites

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

One of the current and future challenges in electronics is to develop suitable multifunctional materials which can address simultaneously several parameters such as flexibility, lightweight, conductivity, environmental impact, and production cost. Polymer electronics forms a new and high-potential technological field, which may pave the way to many novel applications and products. This chapter focuses on the electronic applications of polyurethane (PU) and its composites filled with different conductive fillers including carbon black (CB), graphite, metal particles (MP), carbon nanotube (CNT), and graphene. This chapter also covers PU-conducting polymer blends for various electronic applications. PU composites and blends have wide applications in electronics and optoelectronics. The applications of these include sensors, actuators, EMI shielding, electrolytes for supercapacitors and batteries, electrostatic dissipation, and shape memory applications. The potential global market for printed electronics is huge. PU and its composites-based adhesives have found applications in flexible and printed electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park S-I, Xiong Y, Kim R-H, Elvikis P, Meitl M, Kim D-H, Wu J, Yoon J, Yu C-J, Liu Z, Huang Y, Hwang K-C, Ferreira P, Li X, Choquette K, Rogers JA (2009) Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325:977–981

    Article  CAS  Google Scholar 

  2. Yang C, Lin W, Li Z, Zhang R, Wen H, Gao B, Chen G, Gao P, Yuen MMF, Wong CP (2011) Water-based isotropically conductive adhesives: towards green and low-cost flexible electronics. Adv Funct Mater 21:4582–4588

    Article  CAS  Google Scholar 

  3. Russo A, Ahn BY, Adams JJ, Duoss EB, Bernhard JT, Lewis JA (2011) Pen-on-paper flexible electronics. Adv Mater 23:3426–3430

    Article  CAS  Google Scholar 

  4. Sekitani T, Yokota T, Zschieschang U, Klauk H, Bauer S, Takeuchi K, Takamiya M, Sakurai T, Someya T (2009) Organic nonvolatile memory transistors for flexible sensor arrays. Science 326:1516–1519

    Article  CAS  Google Scholar 

  5. Han L, Song K, Mandlik P, Wagner S (2010) Ultraflexible amorphous silicon transistors made with a resilient insulator. Appl Phys Lett 96:042111

    Article  CAS  Google Scholar 

  6. Takei K, Takahashi T, Ho JC, Ko H, Gillies AG, Leu PW, Fearing RS, Javey A (2010) Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat Mater 9:821–826

    Article  CAS  Google Scholar 

  7. Fan Z, Razavi H, Do J-W, Moriwaki A, Ergen O, Chueh Y-L, Leu PW, Ho JC, Takahashi T, Reichertz LA, Neale S, Yu K, Wu M, Ager JW, Javey A (2009) Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat Mater 8:648–653

    Article  CAS  Google Scholar 

  8. Yoon J, Baca AJ, Park S-I, Elvikis P, Geddes JB, Li L, Kim RH, Xiao J, Wang S, Kim T-H, Motala MJ, Ahn BY, Duoss EB, Lewis JA, Nuzzo RG, Ferreira PM, Huang Y, Rockett A, Rogers JA (2008) Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat Mater 7:907–915

    Article  CAS  Google Scholar 

  9. Hu LB, Wu H, La Mantia F, Yang YA, Cui Y (2010) Thin, flexible secondary li-ion paper batteries. ACS Nano 4:5843–5848

    Google Scholar 

  10. Hu L, Choi JW, Yang Y, Jeong S, La Mantia F, Cui L-F, Cui Y (2009) Highly conductive paper for energy-storage devices. Proc Natl Acad Sci 106:21490–21494

    Article  CAS  Google Scholar 

  11. Yamada T, Hayamizu Y, YamamotoY Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata K (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotech 6:296–301

    Article  CAS  Google Scholar 

  12. Li YJ, Hanada T, Nakaya T (2006) Surface modification of segmented polyurethanes by grafting methacrylates and phosphatidylcholine polar head groups to improve hemocompatibility. Chem Mater 1:763–770

    Google Scholar 

  13. Shirasaka H, Inoue S, Asai K, Okamoto H (2000) Polyurethane urea elastomer having monodisperse poly(oxytetramethylene) as a soft segment with a uniform hard segment. Macromolecules 33:2776–2778

    Article  CAS  Google Scholar 

  14. Liu Z, Bai G, Huang Y, Ma Y, Du F, Li F, Guo T, Chen Y (2007) Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon 45:821–827

    Article  CAS  Google Scholar 

  15. Gurunathan T, Rao CRK, Narayan R, Raju KVSN (2013) Polyurethane conductive blends and composites: synthesis, and applications perspective. J Mater Sci 48:67–80

    Google Scholar 

  16. Nelson A (2008) Stimuli-responsive polymers: engineering interactions. Nat Mater 7:523–525

    Article  CAS  Google Scholar 

  17. Behl M, Lendlein A (2007) Shape-memory polymers. Mater Today 10:20–28

    Article  CAS  Google Scholar 

  18. Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int 41:2034–2057

    Article  CAS  Google Scholar 

  19. Liu YJ, Lv HB, Lan X, Leng JS, Du SY (2009) Review of electro-activate shape-memory polymer composite. Compos Sci Technol 69:2064–2068

    Article  CAS  Google Scholar 

  20. Gunes IS, Jana SC (2008) Shape memory polymers and their nanocomposites: a review of science and technology of new multifunctional materials. J Nanosci Nanotechnol 8:1616–1637

    Article  CAS  Google Scholar 

  21. Ratna D, Karger-Kocsis J (2008) Recent advances in shape memory polymers and composites: a review. J Mater Sci 43:254–269

    Article  CAS  Google Scholar 

  22. Liu C, Qin H, Mather PT (92007) Review of progress in shape-memory polymers. J Mater Chem 17:1543–1558

    Google Scholar 

  23. Beloshenko VA, Varyukhin VN, Voznyak YV (2005) Shape memory effect in polymers. Russ Chem Rev 74:265–284

    Article  CAS  Google Scholar 

  24. Hu JL (2007) Shape memory polymers and textiles. In: Characterization of shape memory properties in polymers. CRC Press, Boca Raton, pp 197–225

    Google Scholar 

  25. Yakacki CM, Willis S, Luders C, Gall K (2008) Deformation limits in shape-memory polymers. Adv Eng Mater 10:112–119

    Article  CAS  Google Scholar 

  26. Kim BK, Lee SY, Lee JS, Baek SH, Choi YJ, Lee JO, Xu M (1998) Polyurethane ionomers having shape memory effects. Polymer 39:2803–2808

    Article  CAS  Google Scholar 

  27. Leng JS, Du SY (2010) Shape memory polymer and multifunctional composite. In: Jiang HY, Schmidt A (eds) The structural variety of shape memory polymers. CRC Press, Boca Raton, pp 21–64

    Google Scholar 

  28. Leng J, Lan X, Liu Y, Du S (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56:1077–1135

    Article  CAS  Google Scholar 

  29. Santiago D, Ferrando F, Flor SD (2014) Influence of holding time on shape recovery in a polyurethane shape-memory polymer. J Mater Eng Perform 23:2567–2573

    Article  CAS  Google Scholar 

  30. Sokolowski WM, Tan SC (2007) Advanced self-deployable structures for space applications. J Spacecraft Rockets 44:750–754

    Article  Google Scholar 

  31. Huang WM, Lee CW, Teo HP (2006) Thermomechanical behavior of a polyurethane shape memory polymer foam. J Intell Mater Syst Struct 17:753–760

    Article  CAS  Google Scholar 

  32. Tey SJ, Huang WM, Sokolowski WM (2001) Influence of long-term storage in cold hibernation on strain recovery and recovery stress of polyurethane shape memory polymer foam. Smart Mater Struct 10:321–325

    Article  CAS  Google Scholar 

  33. Imai S, Sakurai K (2013) An actuator of two-way behavior by using two kinds of shape memory polymers with different Tgs. Precis Eng 37:572–579

    Article  Google Scholar 

  34. Zhu Y, Hu J, Yeung LY, Liu Y, Ji F, Yeung K (2006) Development of shape memory polyurethane fiber with complete shape recoverability. Smart Mater Struct 15:1385

    Article  CAS  Google Scholar 

  35. Meng Q, Hu J, Zhu Y, Lu J, Liu Y (2007) Polycaprolactone-based shape memory segmented polyurethane fiber. J Appl Polym Sci 106:2515–2523

    Article  CAS  Google Scholar 

  36. Yang B (2007) Influence of moisture in polyurethane shape memory polymers and their electrical conductive composites. PhD Thesis. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore

    Google Scholar 

  37. Li F, Qi L, Yang J, Xu M, Luo X, Ma D (2000) Polyurethane/conducting carbon black composites: structure, electric conductivity, strain recovery behavior, and their relationships. J Appl Polym Sci 75:68–73

    Article  CAS  Google Scholar 

  38. Jung YC, Kim JH, Hayashi T, Kim YA, Endo M, Terrones M, Dresselhaus MS (2012) Fabrication of transparent, tough, and conductive shape-memory polyurethane films by incorporating a small amount of high-quality graphene. Macromol Rapid Commun 33:628–634

    Article  CAS  Google Scholar 

  39. Han S, Chun BC (2014) Preparation of polyurethane nanocomposites via covalent incorporation of functionalized graphene and its shape memory effect. Compos Part A 58:65–72

    Article  CAS  Google Scholar 

  40. Kim YJ, Park HC, Kim BK (2015) Triple shape-memory effect by silanized polyurethane/silane-functionalized graphene oxide nanocomposites bilayer. High Perform Polym. doi:10.1177/0954008314565398

    Google Scholar 

  41. Cao F, Jana SC (2007) Nanoclay-tethered shape memory polyurethane nano composites. Polymer 48:3790–3800

    Article  CAS  Google Scholar 

  42. Koerner H, Kelley J, George J, Drummy L, Mirau P, Bell NS, Hsu JWP, Vaia RA (2009) ZnO nanorod—thermoplastic polyurethane nanocomposites: morphology and shape memory performance. Macromolecules 42:8933–8942

    Article  CAS  Google Scholar 

  43. Ohki T, Ni QQ, Iwamoto M (2004) Creep and cyclic mechanical properties of composites based on shape memory polymer. Sci Eng Compos Mater 11:137–147

    Article  Google Scholar 

  44. Ohki T, Ni QQ, Ohsako N, Iwamoto M (2004) Mechanical and shape memory behavior of composites with shape memory polymer. Compos Part A Appl Sci Manuf 35:1065–1073

    Article  CAS  Google Scholar 

  45. Raja M, Ryu SH, Shanmugharaj AM (2013) Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid) (PLA)/CNT nanocomposites. Eur Polym J 49:3492–3500

    Article  CAS  Google Scholar 

  46. Cho JW, Kim JW, Jung YC, Goo NS (2005) Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Commun 26:412–416

    Article  CAS  Google Scholar 

  47. Leng JS, Huang WM, Lan X, Liu YJ, Du SY (2008) Significantly reducing electrical resistivity by forming conductive Ni chains in a polyurethane shape-memory polymer/carbon-black composite. Appl Phys Lett 92:204101

    Article  CAS  Google Scholar 

  48. Choi JT, Dao TD, Oh KM, Lee H, Jeong HM, Kim BK (2012) Shape memory polyurethane nanocomposites with functionalized graphene. Smart Mater Struct 21:075017

    Article  CAS  Google Scholar 

  49. Leng JS, Lan X, Liu YJ, Du SY, Huang WM, Liu N, Phee SJ, Yuan Q (2008) Electrical conductivity of shape memory polymer embedded with micro Ni chains. Appl Phys Lett 92:014104

    Article  CAS  Google Scholar 

  50. Gunes IS, Jimenez GA, Jana SC (2009) Carbonaceous fillers for shape memory actuation of polyurethane composites by resistive heating. Carbon 47:981–997

    Article  CAS  Google Scholar 

  51. Luo H, Li Z, Yi G, Wang Y, Zu X, Wang H, Huang H, Liang Z (2015) Temperature sensing of conductive shape memory polymer composites. Mater Lett 140:71–74

    Article  CAS  Google Scholar 

  52. Lu H, Liang F, Yao Y, Gou J, Hui D (2014) Self-assembled multi-layered carbon nanofiber nanopaper for significantly improving electrical actuation of shape memory polymer nanocomposite. Compos Part B 59:191–195

    Article  CAS  Google Scholar 

  53. Lendlein A, Jiang HY, Junger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434:879–882

    Article  CAS  Google Scholar 

  54. Baer GM, Small W, Wilson TS, Benett WJ, Matthews DL, Hartman J, Maitland DJ (2007) Fabrication and in vitro deployment of a laser-activated shape memory polymer vascular stent. Biomed Eng Online 6:43

    Article  Google Scholar 

  55. Monkman GJ (2000) Advances in shape memory polymer actuation. Mechatronics 10:489–498

    Article  Google Scholar 

  56. Yu YL, Ikeda T (2005) Photodeformable polymers: a new kind of promising smart material for micro- and nano-applications. Macromol Chem Phys 206:1705–1708

    Article  CAS  Google Scholar 

  57. Yi DH, Yoo HJ, Mahapatra SS, Kim YA, Cho JW (2014) The synergistic effect of the combined thin multi-walled carbon nanotubes and reduced graphene oxides on photothermally actuated shape memory polyurethane composites. J Colloid Interface Sci 432:128–134

    Article  CAS  Google Scholar 

  58. Leng JS, Wu XL, Liu YJ (2009) Infrared light-active shape memory polymer filled with nanocarbon particles. J Appl Polym Sci 114:2455–2460

    Article  CAS  Google Scholar 

  59. Schmidt AM (2006) Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol Rapid Commun 27:1168–1172

    Article  CAS  Google Scholar 

  60. Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A (2006) Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. PNAS 103:3540–3545

    Article  CAS  Google Scholar 

  61. Yang B, Huang WM, Li C, Li L, Chor JH (2005) Qualitative separation of the effects of carbon nano-powder and moisture on the glass transition temperature of polyurethane shape memory polymer. Scripta Mater 53:105–107

    Article  CAS  Google Scholar 

  62. Jung YC, So HH, Cho JW (2006) Water-responsive shape memory polyurethane block copolymer modified with polyhedral oligomeric silsesquioxane. J Macromol Sci Part B Phys 45:453–461

    Article  CAS  Google Scholar 

  63. Yang B, Huang WM, Li C, Li L (2006) Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer 47:1348–1356

    Article  CAS  Google Scholar 

  64. Huang WM, Yang B, An L, Li C, Chan YS (2005) Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Appl Phys Lett 86:114105

    Article  CAS  Google Scholar 

  65. Luo H, Li Z, Yi G, Zu X, Wang H, Huang H, Wang Y, Liang Z, Zhang S (2014) Multi-stimuli responsive carbon nanotube–shape memory polymeric composites. Mater Lett 137(2014):385–388

    Article  CAS  Google Scholar 

  66. Park JH, Dao TD, Lee H, Jeong HM, Kim BK (2014) Properties of graphene/shape memory thermoplastic polyurethane composites actuating by various methods. Materials 7:1520–1538

    Article  CAS  Google Scholar 

  67. Mahapatra SS, Yadav SK, Yoo HJ, Ramasamy MS, Cho JW (2014) Tailored and strong electro-responsive shape memory actuation incarbon nanotube-reinforced hyperbranched polyurethane composites. Sensor Actuat B-Chem 193:384–390

    Article  CAS  Google Scholar 

  68. Feninat FE, Laroche G, Fiset M, Mantovani D (2002) Shape memory materials for biomedical applications. Adv Eng Mater 4:91–104

    Article  Google Scholar 

  69. Sokolowski W, Metcalfe A, Hayashi S, Yahia L, Raymond J (2007) Medical applications of shape memory polymers. Biomed Mater 2:S23–S27

    Article  CAS  Google Scholar 

  70. Ikuta MS, Hayato K (2003) Submicron manipulation tools driven by light in a liquid. Appl Phys Lett 82:133–135

    Article  CAS  Google Scholar 

  71. Ikuta MS, Hayato K (2003) Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography. J Microelectromech Syst 12:533–539

    Article  Google Scholar 

  72. Lundberg B, Sundqvist B (1986) Resistivity of a composite conducting polymer as a function of temperature, pressure, and environment: applications as a pressure and gas concentration transducer. J Appl Phys 60:1074–1079

    Article  CAS  Google Scholar 

  73. Marquez A, Uribe J, Cruz R (1997) Conductivity variation induced by solvent swelling of an elastomer-carbon black–graphite composite. J Appl Polym Sci 66:2221–2232

    Article  CAS  Google Scholar 

  74. Hu JW, Chen SG, Zhang MQ, Li MW, Rong MZ (2004) Low carbon black filled polyurethane composite as candidate for wide spectrum gas sensing element. Mater Lett 58:3606–3609

    Article  CAS  Google Scholar 

  75. Chen SG, Hu JW, Zhang MQ, Li MW, Rong MZ (2004) Gas sensitivity of carbon black/waterborne polyurethane composites. Carbon 42:645–651

    Article  CAS  Google Scholar 

  76. ChenS G, Hu XL, Hu J, Zhang MQ, Rong MZ, Zheng Q (2006) Relationships between organic vapor adsorption behaviors and gas sensitivity of carbon black filled waterborne polyurethane composites. Sens Actuators B 119:110–117

    Article  CAS  Google Scholar 

  77. Chen SG, Hu JW, Zhang MQ, Rong MZ (2005) Effects of temperature and vapor pressure on the gas sensing behavior of carbon black filled polyurethane composites. Sens Actuators B 105:187–193

    Article  CAS  Google Scholar 

  78. Chen SG, Hu JW, Zhang MQ, Rong MZ, Zheng Q (2006) Improvement of gas sensing performance of carbon black/waterborne polyurethane composites: effect of crosslinking treatment. Sens Actuators B 113:361–369

    Google Scholar 

  79. Shin JH, Yoon SY, Yoon IJ, Choi SH, Lee SD, Nam H, Cha GS (1998) Potentiometric biosensors using immobilized enzyme layers mixed with hydrophilic polyurethane. Sens Actuators B 50:19–26

    Article  CAS  Google Scholar 

  80. Puig-Lleixa C, JimeÂneza C, Bartroli J (2001) Acrylated polyurethane-photopolymeric membrane for amperometric glucose biosensor construction. Sens Actuators B 72:56–62

    Article  CAS  Google Scholar 

  81. Yu B, Long N, Moussy Y, Moussy F (2006) A long-term flexible minimally-invasive implantable glucose biosensor based on an epoxy-enhanced polyurethane membrane. Biosens Bioelectron 21:2275–2282

    Article  CAS  Google Scholar 

  82. Han JH, Taylor JD, Kim DS, Kim YS, Kim YT, Cha GS, Nam H (2007) Glucose biosensor with a hydrophilic polyurethane (HPU) blended with polyvinyl alcohol/vinyl butyral copolymer (PVAB) outer membrane. Sens Actuators B 123:384–390

    Article  CAS  Google Scholar 

  83. Li L, Ying X, Liu J, Li X, Zhang W (2015) Molecularly imprinted polyurethane grafted calcium alginate hydrogel with specific recognition for proteins. Mater Lett 143:248–251

    Article  CAS  Google Scholar 

  84. Slobodian P, Riha P, Saha P (2012) A highly-deformable composite composed of an entangled network of electrically-conductive carbon-nanotubes embedded in elastic polyurethane. Carbon 50:3446–3453

    Article  CAS  Google Scholar 

  85. Zhang R, Deng H, Valenca R, Jin J, Fub Q, Bilotti E, Peijs T (2012) Carbon nanotube polymer coatings for textile yarns with good strain sensing capability. Sens Actuators A 179:83–91

    Article  CAS  Google Scholar 

  86. Chang F-Y, Wang R-H, Yang H, Lin Y-H, Chen T-M, Huang S-J (2010) Flexible strain sensors fabricated with carbon nano-tube and carbon nano-fiber composite thin films. Thin Solid Films 518:7343–7347

    Article  CAS  Google Scholar 

  87. Bratov A, Abramova N, Dom´ınguez C C, Baldi A A (2000) Ion-selective field effect transistor (ISFET)-based calcium ion sensor with photocured polyurethane membrane suitable for ionised calcium determination in milk. Anal Chim Acta 408:57–64

    Article  CAS  Google Scholar 

  88. Ahir SV, Squires AM, Tajbakhsh AR, Terentjev EM (2006) Infrared actuation in aligned polymer-nanotube composites. Phys Rev B 73:085420

    Article  CAS  Google Scholar 

  89. Diaconu I, Dorohoi D, Topoliceanu F (2006) Electrostriction of a polyurethane elastomer-based polyester. IEEE Sens J 6:876–880

    Article  CAS  Google Scholar 

  90. Guillot FM, Balizer E (2003) Electrostrictive effect in polyurethanes. J Appl Polym Sci 89:399–404

    Article  CAS  Google Scholar 

  91. Ueda T, Kasazaki T, Kunitake N, Hirai T, Kyokane J, Yoshino K (1997) Polyurethane elastomer actuator. Synth Met 85:1415–1416

    Article  CAS  Google Scholar 

  92. Petcharoen K, Sirivat A (2013) Electrostrictive properties of thermoplastic polyurethane elastomer: effects of urethane type and soft-hard segment composition. Curr Appl Phys 13:1119–1127

    Article  Google Scholar 

  93. Diaconu I, Dorohoi D, Ciobanu C (2008) Electromechanical response of polyurethane films with different thickness. Rom J Phys 53:91–97

    CAS  Google Scholar 

  94. Watanabe M, Hirai T, Ueda T, Suzuki M, Amaike Y (1999) Polyurethane actuators using bending piezoelectricity and bending electrostriction. J Intell Mat Syst Struct 10:100–104

    Article  Google Scholar 

  95. Arora S, Ghosha T, Muth J (2007) Dielectric elastomer based prototype fiber actuators. Sens Actuator A-Phys 136:321–328

    Article  CAS  Google Scholar 

  96. Jung Y, Park H, Jo N, Jeong H (2007) Fabrication and performance evaluation of diaphragm-type polymer actuators using segmented polyurethane according to chemical-hard-segment content. Sens Actuator A-Phys 136:367–373

    Article  CAS  Google Scholar 

  97. Yuse K, Guyomar D, Kanda M, Seveyrat L, Guiffard B (2011) Development of large-strain and low-powered electro-active polymers (EAPs) using conductive fillers. Sens Actuator A-Phys 165:147–154

    Article  CAS  Google Scholar 

  98. Petit L, Guiffard B, Seveyrat L, Guyomar D (2008) Actuating abilities of electroactive carbon nanopowder/polyurethane composite films. Sens Actuator A-Phys 148:105–110

    Article  CAS  Google Scholar 

  99. Roussel M, Malhaire C, Deman AL, Chateaux JF, Petit L, Seveyrat L, Galineau J, Guiffard B, Seguineau C, Desmarres JM, Martegoutte J (2014) Electromechanical study of polyurethane films with carbon black nanoparticles for MEMS actuators. J Micromech Microeng 24:055011

    Article  CAS  Google Scholar 

  100. Galineaua J, Guiffard B, Seveyrata L, Lallart M, Guyomar D (2013) Study and modeling of an electrostrictive polyurethane diaphragm loaded with conductive carbon black. Sens Actuator A-Phys 189:117–124

    Article  CAS  Google Scholar 

  101. Chen J, Zhang Z, Huang W, Li J, Yang J, Wang Y, Zhou Z, Zhang J (2015) Carbon nanotube network structure induced strain sensitivity and shape memory behavior changes of thermoplastic polyurethane. Mater Des 69:105–113

    Article  CAS  Google Scholar 

  102. Zeng Z, Jin H, Zhang L, Zhang H, Chen Z, Gao F, Zhang Z (2015) Low-voltage and high-performance electrothermal actuator based on multi-walled carbon nanotube/polymer composites. Carbon 84:327–334

    Article  CAS  Google Scholar 

  103. Raja M, Shanmugharaj AM, Ryu SH, Subha J (2011) Influence of metal nanoparticle decorated CNTs on polyurethane based electro active shape memory nanocomposite actuators. Mater Chem Phys 129:925–931

    Article  CAS  Google Scholar 

  104. Chen T, Qiu J, Zhu K, He X, Kang X, Dong E (2014) Poly(methylmethacrylate)-functionalized graphene/polyurethane dielectric elastomer composites with superior electric field induced strain. Mater Lett 128:19–22

    Article  CAS  Google Scholar 

  105. Okuzaki H, Takagi S, Hishiki F, Tanigawa R (2014) Ionic liquid/polyurethane/PEDOT:PSS composites for electro-active polymer actuators. Sens Actuator Chem 194:59–63

    Article  CAS  Google Scholar 

  106. Jaaoh D, Putson C, Muensit N (2015) Deformation on segment-structure of electrostrictive polyurethane/polyaniline blends. Polymer 61:123–130

    Article  CAS  Google Scholar 

  107. Tobushi H, Hayashi S, Hoshio K, Makino Y, Miwa N (2006) Bending actuation characteristics of shape memory composite with SMA and SMP. J Intell Mater Syst Struct 17:1075–1081

    Article  CAS  Google Scholar 

  108. Bothe M, Pretsch T (2012) Two-way shape changes of a shape-memory poly (ester urethane). Macromol Chem Phys 213:2378–2385

    Article  CAS  Google Scholar 

  109. Chen H, Li Y, Liu Y, Gong T, Wang L, Zhou S (2014) Highly pH-sensitive polyurethane exhibiting shape memory and drug release. Polym Chem 5:5168–5174

    Article  CAS  Google Scholar 

  110. Wang A, Gao H, Sun Y, Yang Y, Wu G, Wang Y, Fan Y, Ma J (2013) Temperature- and pH-responsive nanoparticles of biocompatible polyurethanes for doxorubicin delivery. Int J Pharm 441:30–39

    Article  CAS  Google Scholar 

  111. Koerner H, Price G, Pearce NA, Alexander M, Vaia RA (2004) Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat Mater 3:115–120

    Article  CAS  Google Scholar 

  112. Liang J, Xu Y, Huang Y, Zhang L, Wang Y, Ma Y, Li F, Guo T, Chen Y (2009) Infrared-triggered actuators from graphene-based nanocomposites. J Phys Chem C 113:9921–9927

    Article  CAS  Google Scholar 

  113. Muralidharan MN, Ansari Seema (2013) Thermally reduced graphene oxide/thermoplastic polyurethane nanocomposites as photomechanical actuators. Adv Mat Lett 4:927–932

    CAS  Google Scholar 

  114. Feng Y, Qin M, Guo H, Yoshino K, Feng W (2013) Infrared-actuated recovery of polyurethane filled by reduced graphene oxide/carbon nanotube hybrids with high energy density. ACS Appl Mater Interfaces 5:10882–10888

    Article  CAS  Google Scholar 

  115. Akagi T, Dohta S, Tani T (2001) Development of a flexible pneumatic actuator with a flexible tube. In: INTERMAC2001 joint technical conference, Tokyo, Japan OSP-3 (10933)

    Google Scholar 

  116. Takashima K, Noritsugu T, Rossiter R, Guo S, Mukai T (2012) Curved type pneumatic artificial rubber muscle using shape-memory polymer. J Robot Mechatron 24:472–479

    Google Scholar 

  117. Takamuku S, Fukuda A, Hosoda K (2008) Repetitive grasping with anthropomorphic skin-covered hand enables robust haptic recognition. IEEE/RSJ Int Conf Intell Robots Syst Nice. doi:10.1109/IROS.2008.4651175

    Google Scholar 

  118. Wu X, Kim SH, Zhu H, Ji CH, Allen MG (2012) A refreshable braille cell based on pneumatic microbubble actuators. J Microelectromech S 21:908–916

    Article  Google Scholar 

  119. Peel LD, Mejia J, Narvaez B, Thompson K, Lingala M (2009) Development of a simple morphing wing using elastomeric composites as skins and actuators. J Mech Des 131:091003

    Article  Google Scholar 

  120. Ma CCM, Huang YL, Kuan HC, Chiu YS (2005) Preparation and electromagnetic interference shielding characteristics of novel carbon-nanotube/siloxane/poly-(urea urethane) nanocomposites. J Polym Sci Part B Polym Phys 43:345–358

    Article  CAS  Google Scholar 

  121. Gupta TK, Singh BP, Teotia S, Katyal V, Dhakate SR, Mathur RB (2013) Designing of multiwalled carbon nanotubes reinforced polyurethane composites as electromagnetic interference shielding materials. J Polym Res 20:169

    Article  CAS  Google Scholar 

  122. Liu Z, Bai G, Huang Y, Li F, Ma Y, Guo T, He X, Lin X, Gao H, Chen Y (2007) Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites. J Phys Chem C 111:13696–13700

    Article  CAS  Google Scholar 

  123. Wu HL, Ma CCM, Yang YT, Kuan HC, Yang CC, Chiang CL (2006) Morphology, electrical resistance, electromagnetic interference shielding and mechanical properties of functionalized MWNT and poly(urea urethane) nanocomposites. J Polym Sci Part B Polym Phys 44:1096–1105

    Article  CAS  Google Scholar 

  124. Hsiao S-T, Ma C-CM, Tien H-W, Liao W-H, Wang Y-S, Li S-M, Yang C-Y, Lin S-C, Yang R-B (2015) Effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of a water-borne polyurethane composite. ACS Appl Mater Interfaces 7:2817–2826

    Article  CAS  Google Scholar 

  125. Abbas SM, Dixit AK, Chatterjee R, Goel TC (2007) Complex permittivity, complex permeability and microwave absorption properties of ferrite–polymer composites. J Magn Magn Mater 309:20–24

    Article  CAS  Google Scholar 

  126. Abbas SM, Chandra M, Verma A, Chatterjee R, Goel TC (2006) Complex permittivity and microwave absorption properties of a composite dielectric absorber. Compos Part A 37:2148

    Article  CAS  Google Scholar 

  127. Lakshmi K, John H, Mathew KT, Joseph R, George KE (2009) Microwave absorption, reflection and EMI shielding of PU–PANI composite. Acta Mater 57:371–375

    Article  CAS  Google Scholar 

  128. Wojkiewicz JL, Fauveaux S, Redon N, Miane JL (2004) High electromagnetic shielding effectiveness of polyaniline-polyurethane composites in the microwave band. Int J Appl Electromagn Mech 19:203–206

    Google Scholar 

  129. Scrosati B (1993) Applications of electroactive polymers. Chapman and Hall, London

    Book  Google Scholar 

  130. Xi J, Qiu X, Tang X, Zhu W, Chen L (2006) PVDF–PEO blends based microporous polymer electrolyte: effect of PEO on pore configurations and ionic conductivity. J Power Sour 157:501–506

    Article  CAS  Google Scholar 

  131. Ohno H, Matsuda H, Mizoguchi K, Tsuchida E (1982) Demonstration of solid-state cell based on poly(vinylidene fluoride) system containing lithium perchlorate. Polym Bull 7:271–275

    CAS  Google Scholar 

  132. Hirata M, Inoue S, Yosomiya R (1985) Humidity dependence of the electric characteristics of quaternized poly(vinylpyridine)-perchlorate complexes. Angew Makromol Chem 131:125–134

    Article  CAS  Google Scholar 

  133. Stephan AM, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47:5952–5964

    Article  CAS  Google Scholar 

  134. Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 2006:21–42

    Article  CAS  Google Scholar 

  135. Santhosh P, Vasudevan T, Gopalan A, Lee KP (2006) Preparation and properties of new cross-linked polyurethane acrylate electrolytes for lithium batteries. J Power Sour 160:609–620

    Article  CAS  Google Scholar 

  136. Santhosh P, Gopalan A, Vasudevan T, Lee KP (2006) Preparation and characterization of conducting poly(diphenylamine) entrapped polyurethane network electrolyte. J Appl Polym Sci 101:611–617

    Article  CAS  Google Scholar 

  137. Wright PV (1975) Electrical conductivity in ionic complexes of poly(ethylene oxide). Br Polym J 7:319–327

    Article  CAS  Google Scholar 

  138. Wintersgill MC, Fortanella JJ, Greenbaum SG, Asamic KJ (1985) D.s.c., electrical conductivity, and n.m.r. studies of salt precipitation effects in PPO complexes. Br Polym J 20:195–198

    Article  Google Scholar 

  139. Kobayashi N, Uchida M, Tsuchida E (1985) Poly[lithium methacrylate-co-oligo(oxyethylene)methacrylate] as a solid electrolyte with high ionic conductivity. Solid State Ionics 17:307–311

    Article  CAS  Google Scholar 

  140. Gray FM (1997) Polymer electrolytes. The Royal Society of Chemistry, UK

    Google Scholar 

  141. Yoshimoto N, Nomura H, Shirai T, Ishikawa M, Morita M (2004) Ionic conductance of gel electrolyte using a polyurethane matrix for rechargeable lithium batteries. Electrochim Acta 50:275–279

    Article  CAS  Google Scholar 

  142. Chen W, Chen H, Wen T, Digar M, Gopalan AJ (2004) Morphology and ionic conductivity of thermoplastic polyurethane electrolytes. Appl Polym Sci 91:1154–1167

    Article  CAS  Google Scholar 

  143. Santhosh P, Gopalan A, Vasudevan T, Lee KP (2006) Evaluation of a cross-linked polyurethane acrylate as polymer electrolyte for lithium batteries. Mater Res Bull 41:1023–1037

    Article  CAS  Google Scholar 

  144. Li Y, Wu F, Chen R (2009) Synthesis and characterization of mixing soft-segmented waterborne polyurethane polymer electrolyte with room temperature ionic liquid. Chin Chem Lett 20:519–522

    Article  CAS  Google Scholar 

  145. Parnell S (2002) Doctoral dissertation, University of Akron, Akron

    Google Scholar 

  146. Jeung S (2005) Doctoral dissertation, University of Akron, Akron

    Google Scholar 

  147. Hepburn C (1982) Polyurethane elastomers. Applied Science Publishers, NY

    Google Scholar 

  148. Lavall RL, Ferrari S, Tomasi C, Marzantowicz M, Quartarone E, Magistris A, Mustarelli P, Lazzaroni S, Fagnoni M (2010) Novel polymer electrolytes based on thermoplastic polyurethane and ionic liquid/lithium bis(trifluoromethanesulfonyl) imide/propylene carbonate salt system. J Power Sour 195:5761–5767

    Article  CAS  Google Scholar 

  149. Liu L, Wu X, Li T (2014) Novel polymer electrolytes based on cationic polyurethane with different alkyl chain length. J Power Sour 249:397–404

    Article  CAS  Google Scholar 

  150. Lee H, Han C, Sung Y, Sekhon SS, Kim K (2011) Gel electrolyte based on UV-cured polyurethane for dye-sensitized solar cells. Curr Appl Phys 11:S158–S162

    Google Scholar 

  151. Wen T, Du Y, Digar M (2002) Compositional effect on the morphology and ionic conductivity of thermoplastic polyurethane based electrolytes. Eur Polym J 38:1039–1048

    Article  CAS  Google Scholar 

  152. Wang S, Jeung S, Min K (2010) The effects of anion structure of lithium salts on the properties of in-situ polymerized thermoplastic polyurethane electrolytes. Polymer 51:2864–2871

    Article  CAS  Google Scholar 

  153. Suait MS, Ahmad A, Badri KH, Mohamed NS, Rahman MYA, Azanza Ricardo CL, Scardi P (2010) The potential of polyurethane bio-based solid polymer electrolyte for photoelectrochemical cell application. Int J Hydrogen Energy 39:3005–3017

    Article  CAS  Google Scholar 

  154. Daud FN, Ahmad A, Badri KH (2014) An investigation on the properties of palm-based polyurethane solid polymer electrolyte. Int J Polym Sci 326716

    Google Scholar 

  155. Xing Y, Wu Y, Wang H, Yang G, Li W, Xu L, Jianga X (2014) Preparation of hybrid polymer based on polyurethane lithium salt and polyvinylidene fluoride as electrolyte for lithium-ion batteries. Electrochim Acta 136:513–520

    Article  CAS  Google Scholar 

  156. Wu N, Cao Q, Wang X, Chen Q (2011) Study of a novel porous gel polymer electrolyte based on TPU/PVDF by electrospinning technique. Solid State Ionics 203:42–46

    Article  CAS  Google Scholar 

  157. Zhou L, Cao Q, Jing B, Wang X, Tang X, Wu N (2014) Study of a novel porous gel polymer electrolyte based on thermoplastic polyurethane/ poly(vinylidene fluoride-co-hexafluoropropylene) by electrospinning technique. J Power Sour 263:118–124

    Article  CAS  Google Scholar 

  158. Lavall RL, Ferrari S, Tomasi C, Marzantowicz M, Quartarone E, Fagnoni M, Mustarelli P, Saladino ML (2012) MCM-41 silica effect on gel polymer electrolytes based on thermoplastic polyurethane. Electrochim Acta 60:359–365

    Article  CAS  Google Scholar 

  159. Wu N, Cao Q, Wang X, Li S, Li X, Deng H (2011) In situ ceramic fillers of electrospun thermoplastic polyurethane /poly(vinylidene fluoride) based gel polymer electrolytes for Li-ion batteries. J Power Sour 196:9751–9756

    Article  CAS  Google Scholar 

  160. Furtado CA, de Souza PP, Goulart Silva G, Matencio T, Pernaut JM (2001) Electrochemical behavior of polyurethane ether electrolytes: carbon black composites and application to double layer capacitor. Electrochim Acta 46:1629–1634

    Article  CAS  Google Scholar 

  161. Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dotz F, Kastler M, Facchetti A (2009) A high-mobility electron-transporting polymer for printed transistors. Nature 457:679–686

    Article  CAS  Google Scholar 

  162. Sekitani T, Zschieschang U, Klauk H, Someya T (2010) Flexible organic transistors and circuits with extreme bending stability. Nat Mater 9:1015–1022

    Article  CAS  Google Scholar 

  163. Zschieschang U, Ante F, Yamamoto T, Takimiya K, Kuwabara H, Ikeda M, Sekitani T, Someya T, Kern K, Klauk H (2010) flexible low-voltage organic transistors and circuits based on a high-mobility organic semiconductor with good air stability. Adv Mater 22:982–985

    Article  CAS  Google Scholar 

  164. Gates BD (2009) Flexible electronics. Science 323:1566–1567

    Article  CAS  Google Scholar 

  165. Service RF (2004) Lighting the way to speedier chips. Science 304:674–675

    CAS  Google Scholar 

  166. Yang C, Gu H, Lin W, Yuen MMF, Wong CP, Xiong M, Gao B (2011) Silver nanowires: from scalable synthesis to recyclable foldable electronics. Adv Mater 23:3052–3056

    Article  CAS  Google Scholar 

  167. Ahn BY, Duoss EB, Motala MJ, Guo XY, Park SI, Xiong YJ, Yoon J, Nuzzo RG, Rogers JA, Lewis JA (2009) Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323:1590–1593

    Article  CAS  Google Scholar 

  168. Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428:911–918

    Article  CAS  Google Scholar 

  169. Crone B, Dodabalapur A, Lin YY, Filas RW, Bao Z, LaDuca A, Sarpeshkar R, Katz HE, Li W (2000) Large-scale complementary integrated circuits based on organic transistors. Nature 403:521–523

    Article  CAS  Google Scholar 

  170. De S, Higgins TM, Lyons PE, Doherty EM, Nirmalraj PN, Blau WJ, Boland JJ, Coleman JN (2009) Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 3:767–1774

    Google Scholar 

  171. Chun KY, Oh Y, Rho J, Ahn JH, Kim YJ, Choi HR, Baik S (2010) Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat Nanotechnol 5:853–857

    Article  CAS  Google Scholar 

  172. Fan ZY, Ho JC, Takahashi T, Yerushalmi R, Takei K, Ford AC, Chueh YL, Javey A (2009) Toward the development of printable nanowire electronics and sensors. Adv Mater 21:3730–3743

    Article  CAS  Google Scholar 

  173. Nikitin PV, Lam S, Rao KVS (2005) Low cost silver ink RFID tag antennas. In: Antennas and propagation society international symposium, vol 2B, pp 353–356. doi:10.1109/APS.2005.1552015

  174. Cohen-Karni T, Timko BP, Weiss LE, Lieber CM (2009) Flexible electrical recording from cells using nanowire transistor arrays. Proc Natl Acad Sci USA 106:7309. doi:10.1073/pnas.0902752106

    Article  CAS  Google Scholar 

  175. Siegel AC, Phillips ST, Dickey MD, Lu NS, Suo ZG, Whitesides GM (2010) Flexible printed circuit boards on paper substrates. Adv Funct Mater 20:28–35

    Article  CAS  Google Scholar 

  176. Khang DY, Jiang HQ, Huang Y, Rogers JA (2006) A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311:208–212

    Article  CAS  Google Scholar 

  177. Kim DH, Ahn JH, Choi WM, Kim HS, Kim TH, Song JZ, Huang YGY, Liu ZJ, Lu C, Rogers JA (2008) Stretchable and foldable silicon integrated circuits. Science 320:507–511

    Article  CAS  Google Scholar 

  178. Sekitani T, Takamiya M, Noguchi Y, Nakano S, Kato Y, Sakurai T, Someya T (2007) A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches. Natl Mater 6:413–417

    Article  CAS  Google Scholar 

  179. Araki T, Nogi M, Suganuma K, Kogure M, Kirihara O (2011) Printable and stretchable conductive wirings comprising silver flakes and elastomers. IEEE Electron Device Lett 32:1424–1426

    Article  CAS  Google Scholar 

  180. Shang S, Zeng W, Tao X (2011) High stretchable MWNTs/polyurethane conductive nanocomposites. J Mater Chem 21:7274–7280

    Article  CAS  Google Scholar 

  181. LeMieux MC, Bao ZN (2008) Flexible electronics: stretching our imagination. Nat Nanotechnol 3:585–586

    Article  CAS  Google Scholar 

  182. Rogers JA, Someya T, Huang Y (2010) Materials and mechanics for stretchable electronics. Science 327:1603–1607

    Article  CAS  Google Scholar 

  183. Cong H, Pan T (2008) Photopatternable conductive PDMS materials for microfabrication. Adv Funct Mater 18:1912–1921

    Article  CAS  Google Scholar 

  184. Li Z, Zhang R, Moon K-S, Liu Y, Hansen K, Le T, Wong CP (2013) Highly conductive, flexible, polyurethane-based adhesives for flexible and printed electronics. Adv Funct Mater 23:1459–1465

    Article  CAS  Google Scholar 

  185. Zhang R, Lin W, Moon K-S, Wong CP (2010) Fast preparation of printable highly conductive polymer nanocomposites by thermal decomposition of silver carboxylate and sintering of silver nanoparticles. ACS Appl Mater Interfaces 2:2637–2645

    Article  CAS  Google Scholar 

  186. Jiang H, Moon K-S, Wong CP (2006) Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chem Mater 18:2969–2973

    Article  CAS  Google Scholar 

  187. Ma R, Kwon S, Zheng Q, Kwon HY, Kim JI, Choi HR, Baik S (2012) Carbon-nanotube/silver networks in nitrile butadiene rubber for highly conductive flexible adhesives. Adv Mater 24:3344–3349

    Article  CAS  Google Scholar 

  188. Miller MS, O’Kane JC, Niec A, Carmichael RS, Carmichael TB (2013) Silver nanowire/optical adhesive coatings as transparent electrodes for flexible electronics. ACS Appl Mater Interfaces 5:10165–10172

    Article  CAS  Google Scholar 

  189. Liu J (1999) Conductive adhesives for electronics packaging. Electrochemical Publications, Port Erin

    Google Scholar 

  190. Li Y, Moon KS, Wong CP (2005) Electronics without lead. Science 308:1419–1420

    Article  CAS  Google Scholar 

  191. Li Y, Wong CP (2006) Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: materials, processing, reliability and applications. Mater Sci Eng R 51:1–35

    Article  CAS  Google Scholar 

  192. Li Y, Wong CP (2006) High performance anisotropic conductive adhesives for lead free interconnects soldering. Surf Mount Technol 18:33–39

    Google Scholar 

  193. Zhang RW, Moon KS, Lin W, Wong CP (2010) Preparation of highly conductive polymer nanocomposites by low temperature sintering of silver nanoparticles. J Mater Chem 20:2018–2023

    Article  CAS  Google Scholar 

  194. Yang C, Yuen MMF, Xu B (2008) Using novel materials to enhance the efficiency of conductive polymer. In: The 58th IEEE electronic components and technology conference, vol 5. pp 213–218. doi:10.1109/ECTC.2008.4549972

  195. Li Z, Zhang R, Liu Y, Le T, Wong CP (2012) Highly conductive, flexible, bio-compatible poly-urethane based isotropic conductive adhesives for flexible electronics. In: IEEE 62nd electronic components and technology conference (ECTC), pp 406–411. doi:10.1109/ECTC.2012.6248862

  196. Petrovic ZS (2008) Polyurethanes from vegetable oils. Polym Rev 48:109–155

    Article  CAS  Google Scholar 

  197. Guner FS, Yagci Y, Erciyes AT (2006) Polymers from triglyceride oil. Prog Polym Sci 31:633–670

    Article  CAS  Google Scholar 

  198. Putson C, Lebrun L, Guyomar D, Muensit N, Cottinet P-J, Seveyrat L, Guiffard B (2011) Effects of copper filler sizes on the dielectric properties and the energy harvesting capability of nonpercolated polyurethane composites. J Appl Phys 109:024104

    Article  CAS  Google Scholar 

  199. Belhora F, Cottinet P-J, Hajjaji A, Guyomar D, Mazroui M, Lebrun L, Boughaleb Y (2013) Mechano-electrical conversion for harvesting energy with hybridization of electrostrictive polymers and electrets. Sens Actuators A 201:58–65

    Article  CAS  Google Scholar 

  200. Eddiai A, Meddad M, Guyomar D, Hajjaji A, Boughaleb Y, Yuse K, Touhtouh S, Sahraoui B (2012) Enhancement of electrostrictive polymer efficiency for energy harvesting with cellular polypropylene electrets. Synth Met 162:1948–1953

    Article  CAS  Google Scholar 

  201. Fiorido T, Galineau J, Salles V, Seveyrat L, Belhora F, Cottinet P-F, Hu L, Liu Y, Guiffard B, Moortele AB-VD, Epicier T, Guyomar D, Brioude A (2014) Bifunctional organic/inorganic nanocomposites for energy harvesting, actuation and magnetic sensing applications. Sens Actuators A 211:105–114

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Ansari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ansari, S., Muralidharan, M.N. (2016). Electronic Applications of Polyurethane and Its Composites. In: Ponnamma, D., Sadasivuni, K., Wan, C., Thomas, S., Al-Ali AlMa'adeed, M. (eds) Flexible and Stretchable Electronic Composites. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-23663-6_4

Download citation

Publish with us

Policies and ethics