Skip to main content

Electronic Applications of Ethylene Vinyl Acetate and Its Composites

  • Chapter
  • First Online:
Flexible and Stretchable Electronic Composites

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

Ethyl vinyl acetate (EVA) copolymers exhibit diverse properties ranging from semicrystalline polymer to rubber-like elastomer, which highly depends on the VA percentage and molecular weight. It can be used as membrane materials for electronic applications due to its polarity, flexibility, good processability, and low cost. Insulating EVA can be used for cable sheath, automotive sound damping, or sound barrier sheets. Electrical-conductive EVA with the addition of conductive fillers is suitable for electromagnetic interference shielding applications. Thermal-conductive EVA is a popular material for encapsulation of photovoltaic modules. This chapter covers the recent development of EVA materials in supercapacitors (SCs), actuators, electromagnetic shield interference, sensors, and photovoltaic modules. The flame-retardant properties of EVA composites are discussed. The challenges and perspectives of EVA and EVA-based composites in future electronics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henderson AM (1993) Ethylene-vinyl acetate (EVA) copolymers: ageneral review. IEEE Electr Insul Mag 9:30–38

    Article  Google Scholar 

  2. Perrin MW, Fawcett EW, Williams EG (1940) Interpolymerization of ethylene. USP 2200429

    Google Scholar 

  3. Roedel MJ, Del W (1955) Ethylene/vinyl acetate polymerization process. USP 2703794

    Google Scholar 

  4. Reyes JD (2014) Innovative uses of ethylene vinyl acetate polymers for advancing healthcare. In: SPE polyolefins conference, USA

    Google Scholar 

  5. Integrated Design Engineering Systems (DES), The Plastics Web®, IDES Inc (2006) 209 Grand Avenue Laramie, WY 82070 USA. http://www.ides.com/prospector/

  6. Fink JK (2010) Ethylene vinyl acetate copolymers. In: Handbook of engineering and specialty thermoplastics: polyolens and styrenics. Wiley, Hoboken, pp 187–209

    Google Scholar 

  7. Yamaki SB, Prado EA, Atvars TDZ (2002) Phase transitions and relaxation processes in ethylene-vinyl acetate copolymers probed by fluorescence spectroscopy. Euro Polym J 38: 1811–1826

    Google Scholar 

  8. http://www.dupont.com//content/dam/dupont/products-and-services/packaging-materials-and-solutions/packaging-materials-and-solutions-anding/documents/elvax_thermal_properties.pdf. Accessed March 2015

  9. Wu W, Wan C, Zhang Y (2013) Morphology and mechanical properties of ethylene-vinyl acetate rubber/polyamide thermoplastic elastomers. J Appl Polym Sci 130:338–344

    Article  CAS  Google Scholar 

  10. Wu W, Wan C, Zhang H, Zhang Y (2014) In situ ester-amide exchange reaction between polyamide6 and ethylene-vinyl acetate rubber during melt blending. J Appl Polym Sci. doi:10.1002/APP.40272

    Google Scholar 

  11. Amrollahi H, Borhani M (2015) Effect of EVA content upon the dielectric properties in LDPE-EVA Films. Int J Eng Res 4:69–72

    Article  Google Scholar 

  12. Winter AD, Larios E, Alamgir FM et al (2014) Thermo-active behavior of ethylene-vinyl acetate multiwall carbon nanotube composites examined by in situ near-edge X-ray absorption fine-structure spectroscopy. J Phys Chem C 118:3733–3741

    Article  CAS  Google Scholar 

  13. Zhang Z, Zhai T, Lu X et al (2013) Conductive membranes of EVA filled with carbon black and carbon nanotubes for flexible energy-storage devices. J Mater Chem A1:505–509

    Article  Google Scholar 

  14. Stark W, Jaunich M (2011) Investigation of ethylene/vinyl acetate copolymer (EVA) by thermal analysis DSC and DMA. Polym Test 30:236–242

    Article  CAS  Google Scholar 

  15. Kuila T, Khanra P, Mishra AK et al (2012) Functionalized-graphene/ethylene vinyl acetate co-polymer composites for improved mechanical and thermal properties. Polym Test 31:282–289

    Article  CAS  Google Scholar 

  16. Sohi NJS, Bhadra S, Khastgir D (2011) The effect of different carbon fillers on the electrical conductivity of ethylene vinyl acetate copolymer-based composites and the applicability of different conductivity models. Carbon 49:1349–1361

    Article  CAS  Google Scholar 

  17. Yousefzade O, Hemmati F, Garmabi H et al (2014) Thermal behavior and electrical conductivity of ethylene vinyl acetate copolymer/expanded graphite nanocomposites: effects of nanofiller size and loading. J vinyl Addi Tech. doi:10.1002/vnl.21428

    Google Scholar 

  18. Chandra Das N, Maiti S (2008) Electromagnetic interference shielding of carbon nanotube/ethylene vinyl acetate composites. J Mater Sci 43:1920–1925

    Article  Google Scholar 

  19. Zhang Z, Wang W, Li C et al (2014) Highly conductive ethylene-vinyl acetate copolymer/carbon nanotube paper for lightweight and flexible supercapacitors. J Power Sour 248:1248–1255

    Article  CAS  Google Scholar 

  20. Dopico-Garcia MS, Lasagabaster-Latorre AAA, Garcia X et al (2014) Extruded polyaniline/EVA blends: enhancing electrical conductivity using gallate compatibilizers. Synth Met 189:193–202

    Article  CAS  Google Scholar 

  21. Nakis M, Ram A, Flashner F (1978) Electrical properties of carbon black filled polyethylene. Polym Eng Sci 18:649–653

    Google Scholar 

  22. Narkis M, Vaxman A (1984) Resistivity behavior of filled electrically conductive crosslinked polyethylene. J Appl Polym Sci 29:1639–1652

    Google Scholar 

  23. Di W, Zhang G, Zhao Z et al (2004) Ethylene-(vinyl acetate) copolymer/carbon fiber conductive composite: effect of polymer-filler interaction on its electrical properties. Polym Int 53:449–454

    Article  CAS  Google Scholar 

  24. Yuan L, Xiao X, Ding T et al (2012) Paper-based supercapacitors for self-powered nanosystems. Angew Chem 124:5018–5022

    Article  Google Scholar 

  25. Yuan C, Yang L, Hou L et al (2012) Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ Sci 5:7883–7887

    Article  CAS  Google Scholar 

  26. Wang X, Lu X, Liu B et al (2014) Flexible energy-storage devices: design consideration and recent progress. Adv Mater 26:4763–4782

    Article  CAS  Google Scholar 

  27. Yang X, Zhu J, Qiu L et al (2011) Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv Mater 23:2833–2838

    Article  CAS  Google Scholar 

  28. Lu X, Wang G, Zhai T et al (2012) Stabilized tin nanowire arrays for high-performance and flexible supercapacitors. Nano Lett 12:5376–5381

    Article  CAS  Google Scholar 

  29. Lu X, Zhai T, Zhang X et al (2012) WO3–x@Au@MnO2 core-shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv Mater 24:938–944

    Article  CAS  Google Scholar 

  30. Zhang Z, Zhai T, Lu X et al (2013) Conductive membranes of EVA filled with carbon black and carbon nanotubes for flexible energy-storage devices. J Mater Chem A 1:505–509

    Article  CAS  Google Scholar 

  31. Zhang LL, Zhao X, Stoller MD et al (2012) Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett 12:1806–1812

    Article  CAS  Google Scholar 

  32. Wu Q, Xu Y, Yao Z et al (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4:1963–1970

    Google Scholar 

  33. Cheng Y, Lu S, Zhang H et al (2012) Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett 12:4206–4211

    Article  CAS  Google Scholar 

  34. Choi BG, Hong J, Kang HW et al (2011) Facilitated ion transport in all-solid-state flexible supercapacitors. ACS Nano 5:7205–7213

    Article  CAS  Google Scholar 

  35. Zhang Z, Hang Y, Yang K et al (2015) Three-dimensional carbon nanotube/ethylvinylacetate/polyaniline as a high performance electrode for supercapacitors. J Mater Chem A 3:1884–1889

    Article  CAS  Google Scholar 

  36. Yu MH, Zhang YF, Zeng YX et al (2014) Water surface assisted synthesis of large-scale carbon nanotube film for high-performance and stretchable supercapacitors. Adv Mater 26:4724–4729

    Article  CAS  Google Scholar 

  37. Cong HP, Ren XC, Wang P et al (2013) Flexible graphene–polyaniline composite paper for high-performance supercapacitor. Energy Environ Sci 6:1185–1191

    Article  CAS  Google Scholar 

  38. Ji W, Jiang B, Ai F et al (2015) Temperature-responsive microspheres-coated separator for thermal shutdown protection of lithium ion batteries. RSC Adv 5:172–176

    Article  CAS  Google Scholar 

  39. Czaniková K, Torras N, Esteve J et al (2013) Nanocomposite photoactuators based on an ethylene vinyl acetate copolymer filled with carbon nanotube. Sens Actuat B 186:701–710

    Article  Google Scholar 

  40. Czaniková K, Omastová M, Krupa I et al (2014) Chemistry: the key to our sustainable future, Chapter 1. In: Elastomeric actuators based on ethylene-vinyl acetate and carbon nanotubes. Springer, Heidelberg, pp 1–14

    Google Scholar 

  41. Winter AD, Jaye C, Fischer D et al (2014) Prestrain relaxation in non-covalently modified ethylene-vinyl acetate |PyChol| multiwall carbon nanotube nanocomposites. APL Materials 2:066105

    Article  Google Scholar 

  42. Czaniková K, Krupa I, Račko D et al (2015) In situ electron microscopy of Braille microsystems: photo-actuation of ethylene vinyl acetate/carbon nanotube composites. Mater Res Express 2(2):02561. doi:10.1088/2053-1591/2/2/025601

    Google Scholar 

  43. Huang C, Wu J, Tsao K et al (2011) The manufacture and investigation of multi-walled carbon anotube/polypyrrole/EVA nanopolymeric composites for electromagnetic interference shielding. Thin Solid Films 519:4765–4773

    Article  CAS  Google Scholar 

  44. Song W, Cao M, Lu M et al (2014) Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66:67–76

    Google Scholar 

  45. Das NC, Yamazaki S, Hikosaka M (2005) Electrical conductivity and electromagnetic interference shielding effectiveness of polyaniline–ethylene vinyl acetate composites. Polym Int 54:256–259

    Google Scholar 

  46. Olmedo L, Hourquebie P, Jousse F (1993) Microwave absorbing materials based on conducting polymers. Adv Mater 5:373–377

    Google Scholar 

  47. Rahaman M, Chaki TK, Khastgir D (2012) Consideration of interface polarization in the modeling of dielectric property for ethylene vinyl acetate (EVA)/polyaniline conductive composites prepared through in-situ polymerization of aniline in EVA matrix. Euro Poly J 48:1241–1248

    Google Scholar 

  48. Narkis M, Srivastava S, Tchoudakov R et al (2000) Sensors for liquids based on conductive immiscible polymer blends. Syn Met 113:29–34

    Google Scholar 

  49. Fernandes JCB, Kubota LT, Neto GDO (1999) Potentiometric biosensor for l-ascorbic acid based on ascorbate oxidase of natural source immobilized on ethylene–vinylacetate membrane. Analytica Chimica Acta 385:3–12

    Google Scholar 

  50. Pern FJ (2005) Enhanced adhesion of EVA laminates to primed glass substrates subjected to damp heat exposure. In: Conference record of the thirty-first IEEE photovoltaic specialists conference, 3–7 Jan, pp 495–498

    Google Scholar 

  51. Kempe M (2011) Overview of scientific issues involved in selection of polymers for PV applications. In: Presented at the 37th IEEE photovoltaic specialists conference (PVSC 37), Seattle, Washington, 19–24 June

    Google Scholar 

  52. Pern J (2008) Module encapsulation materials, processing and testing. APP international PV reliability workshop, Shanghai, China

    Google Scholar 

  53. Lee B, Liu J, Sun B, et al (2008) Thermally conductive and electrically insulating EVA composite encapsulants for solar photovoltaic (PV) cell. Express Polym Lett 2:357–363

    Google Scholar 

  54. Li Z, Qu B (2003) Flammability characterization and synergistic effects of expandable graphite with magnesium hydroxide in halogen-free flame-retardant EVA blends. Polym Degrad Stab 81:401–408

    Google Scholar 

  55. Fu M, Qu B (2004) Synergistic flame retardant mechanism of fumed silica in ethylene-vinyl acetate/magnesium hydroxide blends. Polym Degrad Stab 85:633–639

    Google Scholar 

  56. Beyer G (2002) Carbon nanotubes as flame retardants for polymers. Fire Mater 26:291–293

    Google Scholar 

  57. Chang M, Hwang S, Liu S (2014) Flame retardancy and thermal stability of ethylene-vinyl acetate copolymer nanocomposites with alumina trihydrate and montmorillonite. J Indus Eng Chem 25:1596–1601

    Google Scholar 

  58. Hull TR, Price D, Liu Y, et al (2003) An investigation into the decomposition and burning behavior of Ethylene-vinyl acetate copolymer nanocomposite materials. Polym Degrad Stab 82:365–371

    Google Scholar 

  59. Gao Y, Wu J, Wang Q, et al (2014) Flame retardant polymer/layered double hydroxide nanocomposites. J Mater Chem A 2:10996–11016

    Google Scholar 

  60. Batistella M, Otazaghine B, Sonnier R, et al (2014) Fire retardancy of ethylene vinyl acetate/ultrafine kaolinite composites. Polym Degrad Stab 100:54–62

    Google Scholar 

  61. Kempe MD, Jorgensen GJ, Terwilliger KM, et al (2006) Ethylene-vinyl acetate potential problems for photovoltaic packaging. Conference paper, NREL/CP-520-39915

    Google Scholar 

  62. Liu W, Yan X, Lang J et al (2012) Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. J Mater Chem 22:17245–17253

    Article  CAS  Google Scholar 

  63. Lin H, Li L, Ren J, Cai Z et al (2013) Conducting polymer composite film incorporated with aligned carbon nanotubes for transparent, flexible and efficient supercapacitor. Sci Rep 3. doi:10.1038/srep01353

  64. Shen J, Liu A, Tu Y (2012) Asymmetric deposition of manganese oxide in single walled carbon nanotube films as electrodes for flexible high frequency response electrochemical capacitors. Electrochim Acta 78:122–132

    Article  CAS  Google Scholar 

  65. Chou SL, Wang JZ, Chew SY et al (2008) Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors. Electrochem Commun 10:1724–1727

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoying Wan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Giri, S., Wan, C. (2016). Electronic Applications of Ethylene Vinyl Acetate and Its Composites. In: Ponnamma, D., Sadasivuni, K., Wan, C., Thomas, S., Al-Ali AlMa'adeed, M. (eds) Flexible and Stretchable Electronic Composites. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-23663-6_3

Download citation

Publish with us

Policies and ethics