Skip to main content

Poly(Isobutylene-co-Isoprene) Composites for Flexible Electronic Applications

  • Chapter
  • First Online:
Flexible and Stretchable Electronic Composites

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

Flexible, bendable, and stretchable dielectrics which can cover even curved surfaces are important for applications in electronic control systems, consumer electronics, heart pacemakers, body-worn antenna, etc. The requirements for a material to be used as a flexible dielectric are good mechanical flexibility, low dielectric loss, high thermal conductivity (TC), low coefficient of thermal expansion (CTE), etc. It is very difficult to identify a single material which possesses all these properties simultaneously. There are a number of ceramic materials with high relative permittivity and low dielectric loss that are available but are brittle in nature. Butyl rubber has low dielectric loss with good mechanical flexibility and stretchability, but they have low relative permittivity, low TC, and high CTE. Therefore, the practical applications of an elastomer or a ceramic alone are limited. By integrating the flexibility, stretchability, and low processing temperature of butyl rubber with high relative permittivity and low loss of ceramics, a composite may be formed, which can deliver improved performances. In this review, the preparation, characterization, and properties of butyl rubber composites with several ceramics such as Al2O3, BaTiO3 on the microwave dielectric properties, thermal properties, moisture absorption, and mechanical properties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gargama H, Thakur AK, Chaturvedi SK (2015) Polyvinylidene fluoride/nickel composite materials for charge storing, electromagnetic interference absorption, and shielding applications. J Appl Phys 117: 224903-1-9

    Google Scholar 

  2. Sudeep PM, Vinayasree S, Mohanan P, Ajayan PM, Narayanan TN, Anantharaman MR (2015) Fluorinated graphene oxide for enhanced S and X-band microwave absorption. Appl Phys Lett 106:221603-1–221603-5

    Article  Google Scholar 

  3. Siegel AC, Phillips ST, Dickey MD, Lu N, Suo Z, Whitesides GM (2010) Foldable printed circuit boards on paper substrates. Adv Funct Mater 20:28–35

    Article  CAS  Google Scholar 

  4. Kim DH, Rogers JA (2008) Stretchable electronics: materials, strategies and devices. Adv Mater 20:4887–4892

    Google Scholar 

  5. Kramer RK, Majidi C, Sahai R, Wood RJ (2011) IEEE/RSJ international conference on intelligent robots and systems, San Francisco, CA, USA, 25–30 September 1919–1926

    Google Scholar 

  6. Seol YG, Noh HY, Lee SS, Ahn JH, Lee NE (2008) Mechanically flexible low-leakage multilayer gate dielectrics for flexible organic thin film transistor. Appl Phys Lett 93:013305-1–013305-3

    Article  Google Scholar 

  7. Sebastian MT, Jantunen H (2010) Polymer-ceramic composites of 0-3 connectivity for circuits in electronics: a review. Int J Appl Ceram Technol 7:415–434

    CAS  Google Scholar 

  8. Thomas RM, Sparks WJ (1944) Mixed olefinic polymerization process and product. U.S. patent, 2, 356, 128

    Google Scholar 

  9. http://en.wikipedia.org/wiki/Butyl_rubber

  10. Ebewele RO (2000) Polymer science and technology. CRC Press, Florida

    Book  Google Scholar 

  11. http://en.wikipedia.org/wiki/Elastomer

  12. Billmeyer FW (1962) Text book of polymer science. Interscience Publishers, Wiley, New York, London

    Google Scholar 

  13. Duffy J, Wilson GJ (1993) Synthesis of butyl rubber by cationic polymerization. In: Ullman’s encyclopedia of industrial chemistry, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  14. General properties of elastomers, www.elbex-us.com

  15. Thomas D, Chameswary J, Sebastian MT (2011) Mechanically flexible butyl rubber-SrTiO3 composites for microwave applications. Int J Appl Ceram Technol 8:1099–1107

    Article  CAS  Google Scholar 

  16. Chameswary J, Thomas D, Subodh G, Harshan S, Philip J Sebastian MT (2012) Microwave dielectric properties of flexible butyl rubber-strontium cerium titanate composites. J Appl Polym Sci 124:3426–3433

    Google Scholar 

  17. Chameswary J, Sebastian MT (2013) Effect of Ba(Zn1/3Ta2/3)O3 and SiO2 ceramic fillers on the microwave dielectric properties of butyl rubber composites. J Mater Sci: Mater Electron 24:4351–4360

    CAS  Google Scholar 

  18. Chameswary J, Sebastian MT (2013) Butyl rubber-Ba0.7Sr0.3TiO3 composites for flexible microwave electronic applications. Ceram Int 39:2795–2802

    Article  CAS  Google Scholar 

  19. Chameswary J, Namitha LK, Brahmakumar M, Sebastian MT (2014) Material characterization and microwave substrate applications of alumina filled butyl rubber composites. Int J Appl Ceram Technol 11:919–926

    Article  CAS  Google Scholar 

  20. Chameswary J, Sebastian MT (2015) Preparation and Properties of BaTiO3 filled butyl rubber composites flexible electronic circuit applications. J Mater Sci: Mater Electron. doi:10.1007/s10854-015-2879-5

    Google Scholar 

  21. Chameswary J, Sebastian MT (2014) Development of butyl rubber-rutile composites for flexible microwave substrate applications. Ceram Int 40:7439–7448

    Article  CAS  Google Scholar 

  22. Janardhanan C (2015) Butyl rubber-ceramic composites for flexible electronic applications. Ph.D thesis, Cochin University of Science & Technology

    Google Scholar 

  23. Sebastian MT (2008) Dielectric materials for wireless communication. Elsevier, Amsterdam

    Google Scholar 

  24. Mohamad N, Muchtar A, Ghazali MJ, Dahlan HM, Azhari CH (2009) Epoxidised natural rubber—alumina nanoparticle composites (ENRAN): effect of filler loading on the tensile properties. Solid State Sci Technol 17:133–143

    CAS  Google Scholar 

  25. Mohamad N, Muchtar A, Ghazali MJ, Mohd DH, Azhari CH (2008) The effect of filler on epoxidised natural rubber-alumina nanoparticles composites. Eur J Sci Res 24:538–547

    Google Scholar 

  26. Li L, Fang Y, Xiao Q, Wu YJ, Wang N, Chen XM (2014) Microwave dielectric properties of fused silica prepared by different approaches. Int J Appl Ceram Technol 11:193–199

    Article  CAS  Google Scholar 

  27. Hanna FF, Yehiab AA, About-Bakr AF (1973) Dielectric properties of polar rubber mixtures. Br Polym J 5:49–53

    Article  CAS  Google Scholar 

  28. Hakim IK, Bishai AM, Saad AI (1988) Dielectric properties of butyl rubber mixtures at 106–1010 Hz. J Appl Polym Sci 35:1123–1125

    Article  CAS  Google Scholar 

  29. Barron H (1949) Modern synthetic rubbers. Chapman & Hall Ltd., London

    Google Scholar 

  30. Hu T, Juuti J, Jantunen H, Vikkman T (2007) Dielectric properties of BST/polymer composites. J Eur Ceram Soc 27:3997–4001

    Article  CAS  Google Scholar 

  31. Krupka J, Gregonry AP, Kochard OC, Clarke RN, Riddle B, Baker-Jarvis J (2001) Uncertainity of complex permittivity measurement by split post dielectric resonator techniques’. J Eur Ceram Soc 21:2673–2676

    Article  CAS  Google Scholar 

  32. Krupka J, Gabelich S, Derzakowski K, Pierce BM (1999) Comparison of split post dielectric resonator and ferrite disc resonator techniques for microwave permittivity measurements of polycrystalline ytterium iron garnet. Meas Sci Technol 10:1004–1008

    Article  CAS  Google Scholar 

  33. Krupka J (2003) Precise measurement of complex permittivity of dielectric materials at microwave frequencies. Mater Chem Phys 79:195–198

    Article  CAS  Google Scholar 

  34. Murali KP, Rajesh S, Om Prakash A, Kulkarni R, Ratheesh R (2009) Preparation and properties of Silica filled PTFE Flexible laminates for microwave circuit applications. Compos A 40:1179–1185

    Article  Google Scholar 

  35. Rajesh S, Nisa VS, Murali KP, Ratheesh R (2009) Microwave dielectric properties of PTFE/rutile nanocomposites. J Alloy Compd 477:677–682

    Article  CAS  Google Scholar 

  36. Nisa VS, Rajesh S, Murali KP, Priyadarsini V, Potty SN, Ratheesh R (2008) Preparation, characterization and dielectric properties of temperature stable SrTiO3/PEEK composites for microwave substrate applications. Compos Sci Technol 68:106–112

    Article  CAS  Google Scholar 

  37. Todd MG, Shi FG (2002) Validation of a novel dielectric constant simulation model and the determination of its physical parameters. Microelectron J 33:627–632

    Article  CAS  Google Scholar 

  38. Popielarz R, Chiang CK (2007) Polymer composites with dielectric constant comparable to that of barium titanate ceramics. Mater Sci Eng B 139:48–54

    Article  CAS  Google Scholar 

  39. Xie L, Huang X, Wu C, Jiang P (2011) Core shell structured poly(Polymethyl methalycrate) nanocomposites prepared by insitu atom transfer radical polymerization: a route to high dielectric constant materials with inherent low loss of the base polymer. J Mater Chem 21:5897–5906

    Article  CAS  Google Scholar 

  40. Murali KP, Rajesh S, Nijesh KJ, Ratheesh R (2010) The effect of particle size on the microwave dielectric properties of alumina filled PTFE substrates. Int J Appl Ceram Technol 7:475–481

    CAS  Google Scholar 

  41. Sareni B, Krahenubuh L, Beroul A, Brosseau C (1997) Effective dielectric constant of random composite material. J Appl Phys 81:2375–2383

    Article  CAS  Google Scholar 

  42. Sihvola AH (1988) Effective permittivity of dielectric mixtures. IEEE Trans Geosci Remote Sens 26:420–429

    Article  Google Scholar 

  43. Wakino K (1993) A new equation for predicting the dielectric constant of a mixture. J Am Ceram Soc 76:2588–2594

    Article  CAS  Google Scholar 

  44. Goncharenko AV, Lozovski VZ, Venger EF (2000) Lichtenecker’s equation: applicability and limitations. Optics Commun 174:19–32

    Article  CAS  Google Scholar 

  45. Claro F, Rojas R (1991) Correlation and multipolar effects in the dielectric response of particulate matter: an iterative mean-field theory. Phys Rev B 43:6369–6375

    Article  Google Scholar 

  46. Jayasundere N, Smith BV (1993) Dielectric constant for binary piezoelectric 0‐3 composites. J Appl Phys 73:2462–2466

    Article  Google Scholar 

  47. Rao Y, Qu J, Marinis T, Wong CP (2000) A precise numerical prediction of effective relative permittivity for polymer ceramic composites based on effective medium theory. IEEE Trans Compon Packag Technol 23:680–683

    Article  CAS  Google Scholar 

  48. Teirikangas M, Juuti J, Hu T, Jantunen H (2009) Extrinsic influences of the polymer matrix on electrical properties of high frequency composites. Ferroelectrics 387:70–76

    Article  CAS  Google Scholar 

  49. Xiang F, Wang H, Yao X (2006) Preparation and dielectric properties of bismuth based dielectric/PTFE microwave composite. J Eur Ceram Soc 26:1999–2002

    Article  CAS  Google Scholar 

  50. Murugaraj P, Mainwaring D, Mora-Huertas N (2005) Dielectric enhancement in polymer-nanoparticle composites through interphase polarizability. J Appl Phys 98:054304-1–054304-6

    Article  Google Scholar 

  51. Valant M, Suvorov D (2003) Microstructural phenomena in low firing ceramics. Mater Chem Phys 79:104–110

    Article  CAS  Google Scholar 

  52. Xie SH, Zhu BK, Wei XZ, Xu ZK, Xu YY (2005) Polyimide/BaTiO3 composites with controllable dielectric properties. Compos A Appl Sci Manuf 36:1152–1157

    Article  Google Scholar 

  53. Berger MA, Mc Cullough RL (1985) Characterization and analysis of the electrical properties of a metal-filled polymer. Compos Sci Technol 22:81–106

    Article  CAS  Google Scholar 

  54. Vrejoiu I, Pedarnig JD, Dinescu M, Gogonea SB, Bäuerle D (2002) Flexible ceramic-polymer composite films with temperature-insensitive and tunable dielectric permittivity. Appl Phys A 74:407–409

    Article  CAS  Google Scholar 

  55. Tavman IH (1998) Effective thermal conductivity of isotropic polymer composites. Int Commun Heat Mass Transfer 25:723–732

    Article  CAS  Google Scholar 

  56. Kemaloglu S, Ozkoc G, Avtac A (2010) Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites. Thermochim Acta 499:40–47

    Article  CAS  Google Scholar 

  57. Zhou W, Qi S, Li H, Shao S (2007) Study on insulating thermal conductive BN/HDPE composite. Thermochim Acta 452:36–42

    Article  CAS  Google Scholar 

  58. Ling W, Gu A, Liang G, Yuan L (2010) New composites with high thermal conductivity and low dielectric constant for microelectronic packaging. Polym Compos 31:307–313

    CAS  Google Scholar 

  59. Richerson DW (2006) Modern ceramic engineering properties. In: Processing and use in design. Taylor and Francis, CRC Press, London

    Google Scholar 

  60. Progelhof RC, Throne JL, Ruetsch RR (1976) Methods for predicting thermal conductivity of composite systems: a review. Polym Eng Sci 16:615–625

    Google Scholar 

  61. Tsao GTN (1961) Thermal conductivity of two-phase material. Ind Eng Chem 53:395–397

    Article  Google Scholar 

  62. Jaguaribe EF, Beasley DE (1984) Modeling of the effective thermal conductivity and diffusivity of a packed bed with stagnant fluid. Int J Heat Mass Transf 27:399–407

    Article  CAS  Google Scholar 

  63. Menard KP (1999) Dynamic mechanical analysis: a practical introduction. CRC Press, Boca Raton

    Book  Google Scholar 

  64. Hayden HW, Moffatt WG, Wulff J (1984) The structure and properties of materials, vol III. In: Mechanical behaviour, Wiley Eastern Ltd., New Delhi

    Google Scholar 

  65. Chee CY, Song NL, Abdullah LC, Choong TSY, Ibrahim A, Chantara TR (2012) Characterization of mechanical properties: low-density polyethylene nanocomposite using nanoalumina particle as filler. J Nanomater 2012(215978):1–6

    Article  Google Scholar 

  66. Ismail H, Sam ST, Mohd Noor AF, Bakar AA (2007) Properties of ferrite-filled natural rubber composites. Polym Plast Technol Eng 46:641–650

    Article  CAS  Google Scholar 

  67. Zhao H, Li RKY (2008) Effect of water absorption on the mechanical and dielectric properties of nano-alumina filled epoxy nanocomposites. Compos A Appl Sci Manuf 39:602–611

    Article  Google Scholar 

  68. Li TL, Hsu SLC (2010) Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride. J Phys Chem B 114:6825–6829

    Article  CAS  Google Scholar 

  69. Goyal RK, Jadhav P, Tiwari AN (2011) Preparation and properties of new polyphenylene sulfide/AlN composites for electronic packaging. J Electron Mater 40:1377–1383

    Article  CAS  Google Scholar 

  70. Zhou W, Qi S, Tu C, Zhao H, Wang C, Kou J (2007) Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber. J Appl Polym Sci 104:1312–1318

    Article  CAS  Google Scholar 

  71. Joseph N, Janardhanan C, Sebastian MT (2014) Electromagnetic interference shielding properties of butyl rubber single walled carbon nanotube composites. Compos Sci Technol 101:139–144

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Sebastian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sebastian, M.T., Chameswary, J. (2016). Poly(Isobutylene-co-Isoprene) Composites for Flexible Electronic Applications. In: Ponnamma, D., Sadasivuni, K., Wan, C., Thomas, S., Al-Ali AlMa'adeed, M. (eds) Flexible and Stretchable Electronic Composites. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-23663-6_12

Download citation

Publish with us

Policies and ethics