Skip to main content

Electronic Applications of Ethylene Propylene Diene Monomer Rubber and Its Composites

  • Chapter
  • First Online:
Flexible and Stretchable Electronic Composites

Abstract

Ethylene propylene diene monomer (EPDM), due to its outstanding oxygen, ultraviolet (UV), weather, fatigue and moisture resistance, and good electrical properties, is one of the fast growing elastomer. Besides its general applications such as seals, radiator, and hose, being a flexible polymer and an electrical insulator, it is a suitable candidate for electrical cables, cable terminal protectors, bus bar shrouds, etc., and is advantageous in comparison with glass or ceramic insulators. EPDM can be made electrically conductive by incorporating conductive materials such as conductive carbon black (CCB), metals, conductive polymers, carbon nanotubes, or other nanomaterials. The electrically conductive applications of EPDM include pressure-sensitive switches, actuators, microwave absorption, EMI shielding, conductive gaskets, touch pads, biosensors, and many other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karpeles R, Grossi AV (2001) EPDM rubber technology. In: Handbook of elastomers, 2nd edn. Marcel Decker, Inc., New York, pp 845–876

    Google Scholar 

  2. Cesca S (1975) The chemistry of unsaturated ethylene-propylene-based terpolymers. J Polym Sci Part A: Polym Chem Macromol Rev 10(1):1–231

    Google Scholar 

  3. Bokobza L (2012) Enhanced electrical and mechanical properties of multiwall carbon nanotube rubber composites. Polym Adv Technol 23:1543–1549

    Article  CAS  Google Scholar 

  4. Blodgett RB (1983) Twenty-five years of insulated wire and cable. In: Paper #37 presented at a meeting of the rubber division, ACS, Philadelphia, PA, May 1982. RUBBER CHEM. TECHNOL. 56: 270

    Google Scholar 

  5. Mokhothu TH, Luyt AS, Messori M (2014) Reinforcement of EPDM rubber with in situ generated silica particles in the presence of a coupling agent via a sol–gel route. Polym Test 33:97–106

    Article  CAS  Google Scholar 

  6. Henning SK (2007) The use of coagents in the radical cure of elastomers. In: Proceedings of 56th international wire and cable symposium, Exton, PA, USA, pp 587–593

    Google Scholar 

  7. Coran AY (2005) Vulcanisation. In: Mark JE, Eirich FR (ed) The science and technology of rubber, 3rd edn. Elsevier Academic Press, pp 322–3

    Google Scholar 

  8. Chokanandsombat Y, Owjinda S, Sirisinha C (2012) Comparison on properties of acrylonitrile styrene butadiene rubber (NSBR) and styrene butadiene rubber (SBR)/nitrile rubber (NBR) blends. KautGummiKunstst 65(11–12):41–46

    CAS  Google Scholar 

  9. Calleja FJB, Bayer RK, Ezquerra TA (1988) Electrical-conductivity of polyethylene carbon-fiber composites mixed with carbon-black. J Mater Sci 23:1411

    Article  Google Scholar 

  10. Genies GM, Boyle A, Lapkowski M, Tsintavis C (1990) Polyaniline: a historical survey. Synth Met 36:139

    Article  CAS  Google Scholar 

  11. Mattoso LHC (1996) Polyaniline: synthesis, structure and properties. Quim Nova 19:388

    CAS  Google Scholar 

  12. Faez R, De Paoli MA (2001) A conductive elastomer based on EPDM and Polyaniline: II. Effect of crosslinking method. EurPolym J 37:1139

    CAS  Google Scholar 

  13. Walker J (2012) Elastomer engineering guide. http://www.jameswalker.biz. Accessed 10 Mar 2014

  14. Bhuvaneswari CM, Kakade SD, Gupta M (2006) EPDM as futuristic elastomer for insulation of solid rocket motors. Defense Sci J 56(3):309–320

    Article  CAS  Google Scholar 

  15. Moribe T (2012) Mitsubishi heavy industries. Tech Rev 49(4):38–43

    Google Scholar 

  16. Jl Mead, Tao Z (2002) Insulation materials for wire and cable applications. Rubber Chem Technol 75:701–712

    Article  Google Scholar 

  17. Sarathi R, Rao UM, Venkataseshaiah C (2002) Investigation of surface modifications in EPDM rubber due to tracking. Polym Test 21:463–471

    Article  CAS  Google Scholar 

  18. Vijayalekshmi V, Abdul SSM (2013) Mechanical, thermal and electrical properties of EPDM/silicone blend nanocomposites. Int J Eng Res Appl (IJERA) 3(2): 1177–1180. ISSN: 2248–9622

    Google Scholar 

  19. Delor JF, Lacoste J, Barrois ON, Lemaire J (2000) Photo-thermal and natural ageing of (EPDM) rubber used in automotive applications. Influence of carbon black, crosslinking and stabilizing agents. Polym Degrad Stab 67:469–477

    Article  Google Scholar 

  20. Su J, Zhang J, Xu Z (2009) Combined effect of pH level and surface treatment of Sm2O3, SmBO3 and ATO particles on cure, mechanical and electric properties of EPDM composites. Polym Test 28:419–427

    Article  CAS  Google Scholar 

  21. Premamoy G, Bibha C, Achintya SK (1996) Thermal and oxidative degradation of PE-EPDM blends vulcanized differently using sulfur accelerator systems. Eur Polym J 32(8):1015

    Article  Google Scholar 

  22. Nair AB, Philip K, Joseph R (2013) Effect of expanded graphite on thermal, mechanical and dielectric properties of ethylene–propylene–dieneterpolymer/hexafluoropropylene–vinylidinefluoridedipolymer rubber blends. Eur Polym J 49:247–260

    Article  Google Scholar 

  23. Celzard A, Mareche JF, Furdin G, Puricelli S (2000) Electrical conductivity of anisotropic expanded graphite-based monoliths. J Phys D Appl Phys 33:3094–3101

    Article  CAS  Google Scholar 

  24. Zheng W, Wong SC, Sue HJ (2002) Transport behavior of PMMA/expanded graphite nanocomposites. Polymer 73:6767–6773

    Article  Google Scholar 

  25. Saunders DS, Galea SC, Deirmendjian GK (1993) Development of fatigue damage around fastener holes in thick graphite/epoxy composite laminates. Composite 24:309–321

    Article  Google Scholar 

  26. Maia JV, Massi M, Sobrinho ASS (2013) Influence of gas and treatment time on the surface modification of EPDM rubber treated at afterglow microwave plasmas J. Appl Surf Sci 285:918–926

    Article  Google Scholar 

  27. Chan CM, Ko TM, Hiraoka H (1996) Polymer surface modifications by plasmas and photons. Surf Sci Rep 24:1–54

    Article  CAS  Google Scholar 

  28. Grythe KF (2006) Surface modification of EPDM rubber by plasma treatment. Langmuir 22:6109–6124

    Article  CAS  Google Scholar 

  29. Dutra JN, Mello SAC, Massi M, Maciel HS (2006) Surface characterization of synthetic vulcanized EPDM rubber treated with oxygen/argon plasma. In: 41th international symposium on macromolecules, MACRO, Rio de Janeiro 18–21 Feb 2013

    Google Scholar 

  30. Ehsani M, Morshedian J, Bakhshandeh R (2004) An investigation of dynamic mechanical, thermal, and electrical properties of housing materials for outdoor polymeric insulators. Eur Polym J 40:2495–2503

    Article  CAS  Google Scholar 

  31. Canaud C, Nunes CR (2001) EPDM formulations for electric wires and cables. Elastomers Plast 54:56–60

    CAS  Google Scholar 

  32. Sharma KRET (2001) Polymeric insulators. Technical Article, www.appstate.edu/~clementsjs/surfaceflashover/insulatortesting.pdf

  33. ANSI/IEEE Std 4-1978—techniques for high voltage testing, 10.1109/IEEESTD.1995.81695

  34. Joshi KD (2014) Rubber components. http://www.kdjoshi.com. Accessed 10 May 2014

  35. Ehsani M, Borsi H, Bakhshandeh GR (2004) An investigation of dynamic mechanical, thermal, and electrical properties of housing materials for outdoor polymeric insulators. Eur Polym J 40:2495–2503

    Article  CAS  Google Scholar 

  36. Tokoro T, Hackam R (2001) Loss and recovery of hydrophobicity and surface energy of HTV silicone rubber. IEEE Trans Dielectr Electr Insulat 8(6):1088–1097

    Article  CAS  Google Scholar 

  37. Bernstorf RS, Zhao T (1998) Aging tests of polymeric housing materials for non-ceramic insulators. IEEE Electr Insulat Mag 14(2):26–33

    Article  Google Scholar 

  38. Hackam R (1999) Outdoor high voltage composite polymeric insulators. IEEE Trans Dielectr Electr Insulat 6(5):557–585

    Article  CAS  Google Scholar 

  39. Gubanski SM (2003) Modern outdoor insulation—concern and challenges. In: Proceeding of 13th international symposium on high voltage engineering (ISH), Delft, Netherlands

    Google Scholar 

  40. Wang X, Schadler LS, Hillborg H, Auletta T (2006) Nonlinear electrical behavior of treated ZnO-EPDM nanocomposites. ieeexplore.ieee.org/ iel5/4105355/ 4105356/ 04105460.pdf

    Google Scholar 

  41. Donzel L, Gramespacherz H (2004) Silicone composites for HV applications based on microvaristors. In: 2004 international conference on solid dielectrics

    Google Scholar 

  42. Mårtensson E, Nettelblad B, Gäfvert U, Palmqvist L (1998) Electrical properties of field grading materials with silicon carbide and carbon black. In: IEEE international conference on conduction and breakdown in solid dielectrics pp 548–552

    Google Scholar 

  43. Mårtensson E, Gäfvert U (2004) A three-dimensional network model describing a nonlinear composite material. J Phys D:Appl Phys 37:112–119

    Article  Google Scholar 

  44. Sjöstedt H, Montaño R, Gubanski SM (2009) Charge relaxation on surfaces of polymeric insulating materials for outdoor applications. Mater Sci-Pol 27(4/2):1129–1137

    Google Scholar 

  45. Khan Y (2010) Degradation of hydrophobic properties of composite insulators in simulated arid desert environment. Int J Eng Technol IJET-IJENS 10(01): 64–68

    Google Scholar 

  46. Deng H, Hackam R (2000) Dielectr Electr Insul IEEE Trans 7(1): 84–94

    Google Scholar 

  47. Sarathi R, Rao UM, Venkataseshaiah C (2001) Investigations of surface modifications in ethylene propylene diene monomer (EPDM) rubber due to tracking. Polym Test 21:463–471

    Article  Google Scholar 

  48. Yoshimura N, Kumagai S, Du B (1997) Research in Japan on the tracking phenomena of electrical insulating materials. IEEE Electr Insul Mag 13:8–19

    Article  Google Scholar 

  49. Haykin S (1999) Neural networks: a comprehensive foundation. Upper Saddle River, Prentice Hall. ISBN 0132733501

    Google Scholar 

  50. Ahmad AS, Aljunid ASK (2004) Assessment of ESDD on high-voltage insulators using artificial neural network. Elsevier. Electr Power Syst Res 72(2):131–136

    Article  Google Scholar 

  51. Su J, Chen S, Xu Z (2009) Comparison of cure, mechanical, electric properties of EPDM filled with Sm2O3 treated by different coupling agents. Polym Test 28:235–242

    Article  CAS  Google Scholar 

  52. Kang D, Desai K, Lee J, Mead J (2004) Assessing the electrical properties of alternative wire and cable coatings: Metallocene EPDM. Technical report no. 56, pp 1–23

    Google Scholar 

  53. Bartnikas R (2000) Characteristics of cable materials. In: Power and communication cables. IEEE Press, New York. doi:10.1109/9780470545546.fmatter

  54. Mead JL, Tao Z (2011) Insulation materials for wire and cable applications. Rubber Chem Technol 75:701–712

    Article  Google Scholar 

  55. Cheremisinoff NP (ed) (1989) ªHandbook of polymer science and technology. Marcel Dekker, New York, Chapter 2 p 341

    Google Scholar 

  56. Nasrat LS, Hamed M, Ibrahim AA (2014) Effect of ultra violet on dry band arcing behavior of EPDM outdoor insulators. Int J Emerg Technol Adv Eng 4(10): 1–8. ISSN 2250-2459

    Google Scholar 

  57. Farzad R, Hassan A, Jawaid M, Piah MAM (2013) Mechanical properties of alumina trihydrate filled polypropylene/ethylene propylene diene monomer composites for cable applications. Sains Malaysiana 42(6):801–810

    CAS  Google Scholar 

  58. Ehsani M, Zeynali E, Abtahi M, Harati A (2009) LDPE/EPDM blends as electrical insulators with unique surface. Electrical and mechanical properties. Iran Polym J 18(1):37–47

    Google Scholar 

  59. Kumar MSC, Alagar M (2002) Development and characterisation of vinyloxyaminosilane grafted ethylene-propylene-dieneterpolymer (EPDM-g-VOS) for engineering applications. Eur Polym J 38:2023–2031

    Article  CAS  Google Scholar 

  60. Galimberti M, Cipolletti V, Theonis RO, Kumar V (2014) Recent advancements in rubber nanocomposites. Rubber Chem Technol 87(3):417–442

    Article  CAS  Google Scholar 

  61. Tang Q, Liang J, Zhang F (2015) Effect of coupling agent on surface free energy of organic modified attapulgite (OAT) powders and tensile strength of OAT/ethylene-propylene-diene monomer rubber nanocomposites. Powder Technol 270:92–97

    Article  CAS  Google Scholar 

  62. Vijayalekshmi V, Majeed ASSM (2013) Mechanical, thermal and electrical properties of EPDM/silicone blend nanocomposites. Int J Eng Res Appl (IJERA) 3(2):1177–1180. ISSN: 2248-9622

    Google Scholar 

  63. Sau KP, Chaki TK, Khastgir D (1998) Carbon fibre filled conductive composites based on nitrile rubber (NBR), ethylene propylene diene rubber (EPDM) and their blend. Polymer 39(25):6461–6471

    Article  CAS  Google Scholar 

  64. Morsy RM, Ismaiel MN, Yehia AA (2013) Conductivity studies on acrylonitrile butadiene rubber loaded with different types of carbon blacks. Int J Mater Methods Technol 1(4): 22–35. ISSN 2327-0322

    Google Scholar 

  65. Reinaldo R, João SC (2004) Electroactive polymer (EAP) actuators the artificial muscles—reality, potential and challenges, 2nd edn. SPIE Press, Washington, Yoseph Bar-Cohen, pp p1–p3

    Google Scholar 

  66. Ghosh P, Chakrabarti A (2000) Conducting carbon black filled EPDM vulcanizates: assessment of dependence of physical and mechanical properties and conducting character on variation of filler loading. Eur Polym J 36:1043–1054

    Article  CAS  Google Scholar 

  67. Brosseau C, Boulic F, Le Mest Y, Loaec J, Beroual A (1997) Dielectric and microstructure properties of polymer carbon black composites. J Appl Phys 81:882–891

    Article  CAS  Google Scholar 

  68. Norman RH (1970) Conductive rubber and plastics. EPC, New York, p 270

    Google Scholar 

  69. Sau KP, Chaki TK, Khastgir D (1997) Carbon fibre filled conductive composites based on nitrile rubber (NBR), ethylene propylene diene rubber (EPDM) and their blend. J Mater Sci 32:5717–5724

    Article  CAS  Google Scholar 

  70. Hoffman W (1998) Rubber technology handbook. Hanser, Munich 431

    Google Scholar 

  71. Younan AF, Choneimt AM, Nour AE (1995) Electrical and physical properties of EPDM rubber loaded with semi reinforcing furnace black. Polym Degrad Stab 49:215–222

    Article  CAS  Google Scholar 

  72. Sau KP, Chaki TK, Khastgir D (1999) Electrical and mechanical properties of conducting carbon black filled composites based on rubber and rubber blends. J Appl Polym Sci 71:887–895

    Article  CAS  Google Scholar 

  73. Sau KP, Chaki TK, Khastgir D (1999) The effect of compressive strain and stress on electrical conductivity of conductive rubber composites. Rubber Chem Technol 73:310–324

    Article  Google Scholar 

  74. Sahoo MK, Sahoo S (2014) Synthesis and characterization of ethylene-propylene diene monomer(EPDM)/MWCNT composites. Adv Polym Sci Technol: Int J 4(1):7–11

    Google Scholar 

  75. Kanamori (1986) Structural formation of hybrid siloxane‐based polymer monolith in confined spaces. J Sep Sci 27(10–11): 874–886

    Google Scholar 

  76. Chen YH, Grundlehner B, Gadeyne S, Boon P, Hoof CV (2014) Soft, comfortable polymer dry electrodes for high quality ECG and EEG recording. Sensors 14: 23758–23780. doi:10.3390/s141223758

    Google Scholar 

  77. Suzumori K, Suzuki H (2007) A Bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. In: IEEE international conference on robotics and automation Roma, Italy 10–14 April 2007

    Google Scholar 

  78. Shokr FS (2011) Dielectric properties of carbon black loaded EPDM rubber based conductive composites: effect of curing method. J Am Sci 7(9):387–397

    Google Scholar 

  79. Magda M, Abou Z (2007) Radiation effect on properties of carbon black filled NBR/EPDM rubber blends. Eur Polym J 43:4415–4422

    Article  Google Scholar 

  80. Deepalaxmi R (2014) Property enhancement of SiR-EPDM blend using electron beam irradiation. J Electr Eng Technol 9(3):984–990

    Article  Google Scholar 

  81. Sonerud B, Josefsson S, Furuheim K, Frohne C (2013) Nonlinear electrical properties and mechanical strength of EPDM with polyaniline and carbon black filler. In: IEEE international conference on solid dielectrics, Bologna, Italy 30 June–4 July 2013

    Google Scholar 

  82. Zoppi RA, De Paoli MA (1996) Chemical preparation of conductive elastomeric blends: polypyrrole/EPDM-II Utilization of matrices containing crosslinking agents, reinforcing fillers and stabilizers. Polymer 37(10):1999–2009

    Article  CAS  Google Scholar 

  83. Gupta T (1990) Application of zinc oxide varistors. J Am Ceram Soc 73:1817–1840

    Article  CAS  Google Scholar 

  84. Allen RD (1983) Fundamentals of compounding EPDM for cost/performance. J Elastomer Plast 15(1):19

    Article  CAS  Google Scholar 

  85. Su J, Chen S, Zhang J, Xu Z (2009) Comparison of cure, mechanical, electric properties of EPDM filled with Sm2O3 treated by different coupling agents. Polym Testing 28:235–242

    Article  CAS  Google Scholar 

  86. Athawale AA, Joshi AM (2011) Studies on electrically conductive composites of ethylene propylene diene monomer rubber and steel fibers. J Appl Polym Sci 120:3036–3041

    Article  CAS  Google Scholar 

  87. Gessler AM (1969) Evidence for chemical interaction in carbon and polymer associations. Extension of original work on effect of carbon black structure. Rubber Chem Technol 42:850

    Article  CAS  Google Scholar 

  88. Langley M (1973) Carbon fibres in engineering. Composites 5(2):84

    Google Scholar 

  89. Wakil AAE, Megeed AAE (2011) Effect of calcium carbonate, Sillitin N 85 and carbon black fillers on the mechanical and electrical properties of the EPDM. ARPN J of Engg and Appl Sci 6(5):24–29

    Google Scholar 

  90. Liu X, Xing H, Zhao L, Chen X (2012) Preparation and electrical properties of CB/PVC/EPDM conductive foam composite. In: 2nd international conference on electronic and mechanical engineering and information technology (EMEIT)

    Google Scholar 

  91. Lawindy AMYE (2005) Studies of electrical and physico-mechanical properties of EPDM structure, foams, Egypt. J Solids 28(1):97–107

    Google Scholar 

  92. Heggli M (2001) Elastomeric nanocomposites. Research plan. Institute of Polymers, ETH Zurich, Project Review. http://www.mat.ethz.ch

  93. Sekitani T, Aida T, Someya T (2002) Carbon nanotubes—the route toward applications. Science 297:787

    Article  Google Scholar 

  94. Kim J, Baek WK, Lim KT, Kang I (2010) Flexible strain sensor based on carbon nanotube rubber composites. Nanosensors, biosensors and info-tech sensors and system 76460 N: doi:10.1117/12.847364

  95. Smith CS (1954) Piezoresistance effect in germanium and silicon. Phys Rev 94:42

    Article  CAS  Google Scholar 

  96. Allahbakhsh A, Sharif F (2013) Cure kinetics and chemorheology of EPDM/graphene oxide nanocomposites. Thermochim Acta 563:22–32

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjali A. Athawale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Athawale, A.A., Joshi, A.M. (2016). Electronic Applications of Ethylene Propylene Diene Monomer Rubber and Its Composites. In: Ponnamma, D., Sadasivuni, K., Wan, C., Thomas, S., Al-Ali AlMa'adeed, M. (eds) Flexible and Stretchable Electronic Composites. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-23663-6_11

Download citation

Publish with us

Policies and ethics