Skip to main content

Natural Polyisoprene Composites and Their Electronic Applications

  • Chapter
  • First Online:
Flexible and Stretchable Electronic Composites

Abstract

Rubber-based composites have been recognized as efficient materials for the fabrication of technologically important products. Various particles are successfully incorporated into cis-polyisoprene or natural rubber (NR) in recent years both in solution and in melt forms. Potential electronic applications of such composites specifically containing carbon nanotubes, graphene, graphene-like structures, fibers, metallic fillers, and inorganic fillers have been realized in this article. Advanced performances of NR composites obtained via different methods are compared with those of the neat polymer. Special attention is paid to the structural changes occurring in the matrix under the influence of fillers. Other issues regarding the technology limitations, research challenges, and future trends are also discussed. The main objective of this review is threefold: (1) to present the latest electronic applications of NR composite technology and development, (2) to describe the need for fundamental research in this field, and (3) to outline major challenges in rubber composite preparation. At first an overview of NR composites, then their preparation methods, and thereafter their applications are described. In short, other than summarizing different classes of particles filled NR composites and their applications, this review highlights different ways to create smaller, cheaper, lighter, and faster devices based on such materials. The developed materials are highly useful in the fields of electronics and diffusion as well as in the marine and transport industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ponnamma D, Maria HJ, Chandra AK, Thomas S (2013) Rubber nanocomposites: latest trends and concepts. Adv Struct Mater 12:69–107

    Article  Google Scholar 

  2. Harris J, Stevenson A (2011) On the role of nonlinearity in the dynamic behavior of rubber components. Rubber Chem Technol 59:740–764

    Article  Google Scholar 

  3. Angellier H, Molina-Boisseau S, Dufresne A (2005) Mechanical properties of waxy maize starch nanocrystal reinforced natural rubber. Macromolecules 38:9161–9170

    Article  CAS  Google Scholar 

  4. Sato S, Honda Y, Kuwahara M, Kishimoto H, Yagi N, Muraoka K, Watanabe T (2004) Microbial scission of sulfide linkages in vulcanized natural rubber by a white rot basidiomycete, ceriporiopsis s ubvermispora. Biomacromolecules 5:511–515

    Article  CAS  Google Scholar 

  5. Sanguansap K, Suteewong T, Saendee P, Buranabunya U, Tangboriboonrat P (2005) Composite natural rubber based latex particles: a novel approach. Polymer 46:1373–1378

    Article  CAS  Google Scholar 

  6. Ponnamma D, Sung SH, Hong JS, Ahn KH, Varughese KT, Thomas S (2014) Influence of non-covalent functionalization of carbon nanotubes on the rheological behavior of natural rubber latex nanocomposites. Eur Polymer J 53:147–159

    Article  CAS  Google Scholar 

  7. Trabelsi S, Albouy PA, Rault J (2003) Effective local deformation in stretched filled rubber. Macromolecules 36:9093–9099

    Article  CAS  Google Scholar 

  8. Rault J, Marchal J, Judeinstein P, Albouy PA (2006) Stress-induced crystallization and reinforcement in filled natural rubbers: 2H NMR study. Macromolecules 39:8356–8368

    Article  CAS  Google Scholar 

  9. Poompradub S, Tosaka M, Kohjiya S, Ikeda Y, Toki S, Sics I, Hsiao BS (2005) Mechanism of strain-induced crystallization in filled and unfilled natural rubber vulcanizates. J Appl Phy 97:103529/1–103529/9

    Google Scholar 

  10. Ozbas B, Toki S, Hsiao BS, Chu B, Register RA, Aksay IA, Prud’homme RK, Adamson DH (2012) Strain-induced crystallization and mechanical properties of functionalized graphene sheet-filled natural rubber. J Polym Sci Part B Polym Phys 50:718–723

    Article  CAS  Google Scholar 

  11. Brydson JA (1988) Rubbery materials and their compounds. Elsevier, Essex

    Google Scholar 

  12. Bode HB, Kerkhoff K, Jendrossek D (2001) Bacterial degradation of natural and synthetic rubber. Biomacromolecules 2:295–303

    Article  CAS  Google Scholar 

  13. Schwerin M, Walsh D, Richardson D, Kisielewski R, Kotz R, Routson L, Lytle CD (2002) Biaxial flex-fatigue and viral penetration of natural rubber latex gloves before and after artificial aging. J Biomed Mater Res 63:739–745

    Article  CAS  Google Scholar 

  14. Walsh DL, Schwerin MR, Kisielewski RW, Kotz RM, Chaput MP, Varney GW, To TM (2004) Abrasion resistance of medical glove materials. J Biomed Mater Res B 68:81–87

    Article  CAS  Google Scholar 

  15. Kurian JK, Peethambaran NR, Mary KC, Kuriakose B (2000) Effect of vulcanization systems and antioxidants on discoloration and degradation of natural rubber latex thread under UV radiation. J Appl Polym Sci 78:304–310

    Article  CAS  Google Scholar 

  16. Abad L, Relleve L, Aranilla C, Aliganga A, Diego CS, Rosa AD (2002) Natural antioxidants for radiation vulcanization of natural rubber latex. Polym Degrad Stab 76:275–279

    Article  CAS  Google Scholar 

  17. Wu YP, Wang YQ, Zhang HF, Wang YZ, Yu DS, Zhang LQ, Yang J (2005) Rubber–pristine clay nanocomposites prepared by co-coagulating rubber latex and clay aqueous suspension. Compos Sci Technol 65(7):1195–1202

    Article  CAS  Google Scholar 

  18. David JK, Hull TR (2012) A review of candidate fire retardants for polyisoprene. Polym Degrad Stab 97:201–213

    Article  CAS  Google Scholar 

  19. Busfield JJC, Deeprasertkul C, Thomas AG (2000) The effect of liquids on the dynamic properties of carbon black filled natural rubber as a function of pre-strain. Polymer 41:9219–9225

    Article  CAS  Google Scholar 

  20. Cai HH, Li SD, Rian TG, Wang HB, Wang JH (2003) Reinforcement of natural rubber latex film by ultrafine calcium carbonate. J Appl Polym Sci 87:982–985

    Article  CAS  Google Scholar 

  21. Arroyo M, Lopez-Manchado MA, Herrero B (2003) Organo-montmorillonite as of carbon black in natural rubber compounds. Polymer 44:2447–2453

    Article  CAS  Google Scholar 

  22. Jose L, Joseph R (1993) Study of the effect of polyethylene-glycol in field natural-rubber latex vulcanizates. Kaut Gummi Kunstst 46:220–222

    CAS  Google Scholar 

  23. Afiq MM, Azura AR (2013) Effect of sago starch loadings on soil decomposition of natural rubber latex. Int Biodeter Biodegrad 85:139–149

    Article  CAS  Google Scholar 

  24. Kong LX, Peng Z, Li SD, Bartold PM (2000) Nanotechnology and its role in the management of periodontal diseases. Periodontol 40:184–196

    Article  Google Scholar 

  25. Ranimol S, Thomas S (2010) Nanocomposites: state of the art, new challenges and opportunities In: Ranimol S, Thomas S (eds) Rubber nanocomposites: preparation, properties, and applications. Wiley, Singapore

    Google Scholar 

  26. Dufresne A (2010) Natural rubber green nanocomposites In: Ranimol S, Thomas S (eds) Rubber nanocomposites: preparation, properties, and applications. Wiley, Singapore

    Google Scholar 

  27. Ajayan PM, Schadler LS, Giannaris C, Rubio A (2000) Single-walled carbon nanotube–polymer composites: strength and weakness. Adv Mater 12:750–753

    Article  CAS  Google Scholar 

  28. Thostenson ET (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912

    Article  CAS  Google Scholar 

  29. Sadasivuni KK, Ponnamma D, Thomas S, Grohens Y (2014) Evolution from graphite to graphene elastomer composites. Prog Polym Sci 39:749–780

    Article  CAS  Google Scholar 

  30. Novoselov KS (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  31. Sadasivuni KK, Saiter A, Gautier N, Thomas S, Grohens Y (2013) Effect of molecular interactions on the performance of poly (isobutylene-co-isoprene)/graphene and clay nanocomposites. Colloid Polym Sci 291:1729–1740

    Article  CAS  Google Scholar 

  32. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  CAS  Google Scholar 

  33. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  34. Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–723

    Article  CAS  Google Scholar 

  35. Mukhopadhyay P, Gupta RK (2011) Trends and frontiers in graphene-based polymer nanocomposites. Plast Eng 32:32–42

    Google Scholar 

  36. Prud’Homme RK, Ozbas B, Aksay I, Register R, Adamson D (2010) Functional graphene-rubber nanocomposites. US Patent No 7745528

    Google Scholar 

  37. Varghese S, Karger-Kocsis J (2004) Melt-compounded natural rubber nanocomposites with pristine and organophilic layered silicates of natural and synthetic origin. J Appl Polym Sci 91:813–819

    Article  CAS  Google Scholar 

  38. Varghese S, Karger-Kocsis J (2003) Natural rubber-based nanocomposites by latex compounding with layered silicates. Polymer 44:4921–4927

    Article  CAS  Google Scholar 

  39. Hambir S, Bulakh N, Jog JP (2002) Polypropylene/clay nanocomposites: effect of compatibilizer on the thermal, crystallization and dynamic mechanical behavior. Polym Eng Sci 42:1800–1807

    Article  CAS  Google Scholar 

  40. Kodgire P, Kalgoannkar R, Hambir S, Bulukh N, Jog JP (2001) PP/clay nanocomposites: effect of clay treatment on morphology and dynamic mechanical properties. J Appl Polym Sci 81:1786–1792

    Article  CAS  Google Scholar 

  41. Sadasivuni KK, Castro M, Saiter A, Delbreilh L, Feller JF, Thomas S, Grohens Y (2013) Development of poly(isobutylene-co-isoprene)/reduced graphene oxide nanocomposites for barrier, dielectric and sensing applications. Mater Lett 96:109–112

    Article  CAS  Google Scholar 

  42. Ponnamma D, Sadasivuni KK, Grohens Y, Guo Q, Thomas S (2014) Carbon nanotubes based elastomer composites-an approach towards multifunctional materials. doi: 10.1039/C4TC01037J

    Google Scholar 

  43. Lin N, Yu J, Chang PR, Li J, Huang J (2011) Poly (butylene succinate)-based biocomposites filled with polysaccharide nanocrystals: structure and properties. Polym Compos 32:472–482

    Article  CAS  Google Scholar 

  44. Carretero-Gonzalez J, Verdejo R, Toki S, Hsiao BS, Giannelis EP, López-Manchado MA (2008) Real time crystallization of organoclay nanoparticles filled natural rubber under stretching. Macromolecules 41:2295–2298

    Article  CAS  Google Scholar 

  45. Carretero-González J, Retsos H, Verdejo R, Toki S, Hsiao BS, Giannelis EP, López-Manchado MA (2008) Effect of nanoclay on natural rubber microstructure. Macromolecules 41:6763–6772

    Article  CAS  Google Scholar 

  46. Qu L, Huang G, Liu Z, Zhang P, Weng G, Nie Y (2009) Remarkable reinforcement of natural rubber by deformation-induced crystallization in the presence of organophilic montmorillonite. Acta Mater 57:5053–5060

    Article  CAS  Google Scholar 

  47. Nie YJ, Huang GS, Qu LL, Wang XA, Weng GS, Wu JR (2011) New insights into thermodynamic description of strain-induced crystallization of peroxide cross-linked natural rubber filled with clay by tube model. Polymer 52:3234–3242

    Article  CAS  Google Scholar 

  48. Nie YJ, Huang G, Qu L, Zhang P, Weng G, Wu JR (2011) Structural evolution during uniaxial deformation of natural rubber reinforced with nano-alumina. Adv Technol 22:2001–2008

    Article  CAS  Google Scholar 

  49. Jiang HX, Ni QQ, Natsuki T (2010) Tensile properties and reinforcement mechanisms of natural rubber/vapor-grown carbon nanofiber composite. Polym Compos 31:1099–1104

    CAS  Google Scholar 

  50. Angles MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites 1 structural analysis. Macromolecules 33:8344–8353

    Article  CAS  Google Scholar 

  51. Kim JT, Oh TS, Lee DH (2004) Curing and barrier properties of NBR/organo–clay nanocomposite. Polym Int 53:406–411

    Article  CAS  Google Scholar 

  52. Putaux JL, Molina-Boisseau S, Momaur T, Dufresne A (2003) Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis. Biomacromolecules 4:1198–1202

    Article  CAS  Google Scholar 

  53. Youssef H, Lucian AL, Orlando JR (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  54. Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86:1468–1475

    Article  CAS  Google Scholar 

  55. Schurz J (1999) Trends in polymer science—a bright future for cellulose. Prog Polym Sci 24:481–483

    Article  CAS  Google Scholar 

  56. Teh PL, Ishak ZAM, Hashim AS, Karger-Kocsis J, Ishiaku US (2004) Effects of epoxidized natural rubber as a compatibilizer in melt compounded natural rubber–organoclay nanocomposites. Eur Polym J 40:2513–2521

    Article  CAS  Google Scholar 

  57. Magaraphan R, Thaijaroen W, Lim-Ochakun R (2003) Structure and properties of natural rubber and mont morrilonite nanocomposites. Rubber Chem Technol 76:406–418

    Article  CAS  Google Scholar 

  58. Nair KG, Dufresne A (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites 1 processing and swelling behavior. Biomacromolecules 4:657–665

    Article  CAS  Google Scholar 

  59. Nair KG, Dufresne A (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites 2 mechanical behavior. Biomacromolecules 4:666–674

    Article  CAS  Google Scholar 

  60. Nair KG, Dufresne A (2003) Crab shell chitin whiskers reinforced natural rubber nanocomposites 3 effect of chemical modification of chitin whiskers. Biomacromolecules 4:1835–1842

    Article  CAS  Google Scholar 

  61. Peng Z, Kong LX, Li SD (2005) Non-isothermal crystallisation kinetics of self-assembled polyvinylalcohol/silica nano-composite. Polymer 46:1949–1955

    Article  CAS  Google Scholar 

  62. Peng Z, Kong LX, Li SD (2005) Thermal properties and morphology of a poly (vinyl alcohol)/silica nanocomposite prepared with a self-assembled monolayer technique. J Appl Polym Sci 96:1436–1442

    Article  CAS  Google Scholar 

  63. Peng Z, Kong LX, Li SD, Spiridonov P (2006) Poly (vinyl alcohol)/silica nanocomposites: morphology and thermal degradation kinetics. J Nanosci Nanotechnol 6:3934–3938

    Article  CAS  Google Scholar 

  64. Li SD, Peng Z, Kong LX, Zhong JP (2006) Thermal degradation kinetics and morphology of natural rubber/silica nanocomposites. J Nanosci Nanotechnol 6:541–546

    Article  CAS  Google Scholar 

  65. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. London Imperial College Press, London

    Book  Google Scholar 

  66. Huczko A (2002) Synthesis of aligned carbon nanotubes. Appl Phys A Mater Sci Process 74:617–638

    Article  CAS  Google Scholar 

  67. Berber S, Kwon YK, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616

    Article  CAS  Google Scholar 

  68. Ponnamma D, Sadasivuni KK, Strankowski M, Guo Q, Thomas S (2013) Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application. Soft Matter 9:10343

    Article  CAS  Google Scholar 

  69. Hone J, Llaguno MC, Nemes NM, Johnson AT, Fischer JE, Walters DA, Casavant MJ, Schmidt J, Smalley RE (2000) Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl Phys Lett 77:666–668

    Article  CAS  Google Scholar 

  70. Thomas PS, Abdullateef AA, Al-Harthi MA, Atieh MA, De SK, Rahaman M, Chaki TK, Khastgir D, Bandyopadhyay S (2012) Electrical properties of natural rubber nanocomposites: effect of 1-octadecanol functionalization of carbon nanotubes. J Mater Sci 47(7):3344–3349

    Article  CAS  Google Scholar 

  71. Weng GS, Huang GS, Qu LL, Nie YJ, Wu JR (2010) Large-scale orientation in a vulcanized stretched natural rubber network: proved by in situ synchrotron X-ray diffraction characterization. J Phys Chem B 114:7179–7188

    Article  CAS  Google Scholar 

  72. Tonpheng B, Andersson O (2008) Crosslinking, thermal properties and relaxation behaviour of polyisoprene under high-pressure. Eur Polym J 44:2865–2873

    Article  CAS  Google Scholar 

  73. Liang J, Huang Y, Ma Y, Liu Z, Cai J, Zhang C, Gao H, Chen Y (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47:922–925

    Article  CAS  Google Scholar 

  74. De Rosa M, Mancinelli R, Sarasini F, Sarto MS, Tamburrano A (2009) Electromagnetic design and realization of innovative fiber-reinforced broad-band absorbing screens. IEEE Trans Electromag Compat 51:700–707

    Article  Google Scholar 

  75. De Rosa M, Dinescu A, Sarasini F, Sarto MS, Tamburrano A (2010) Effect of short carbon fibers and MWCNTs on microwave absorbing properties of polyester composites containing nickel coated carbon fibers. Compos Sci Technol 70:102

    Article  CAS  Google Scholar 

  76. De Bellis G, De Rosa IM, Dinescu A, Sarto MS, Tamburrano A (2010) Proceedings of the 2010 IEEE international symposium on electromagnetic compatibility, Fort Lauderdale 202

    Google Scholar 

  77. Angellier H, Molina-Boisseau S, Belgacem MN, Dufresne A (2005) Surface chemical modification of waxy maize starch nanocrystals. Langmuir 21:2425–2433

    Article  CAS  Google Scholar 

  78. Trovatti E, Carvalho AJF, Ribeiro SJL, Gandini A (2013) Simple green approach to reinforce natural rubber with bacterial cellulose nanofibers. Biomacromolecules 14(8):2667–2674

    Article  CAS  Google Scholar 

  79. Avérous L, Halley PJ (2009) Biocomposites based on plasticized starch. Biofuels Bioprod Bioref 3:329

    Article  CAS  Google Scholar 

  80. Avérous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci C Polym Rev C 44:231–274

    Article  CAS  Google Scholar 

  81. Ray S, Bousmia M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079

    Article  CAS  Google Scholar 

  82. Roy N, Sengupta R, Bhowmick AK (2012) Modifications of carbon for polymer composites and nanocomposites. Prog Polym Sci 37(6):781–819

    Article  CAS  Google Scholar 

  83. Dufresne A, Cavaille JY, Helbert W (1996) New nanocomposite materials: microcrystalline starch reinforced thermoplastic. Macromolecules 29:7624–7626

    Article  CAS  Google Scholar 

  84. Baek JB, Lyons CB, Tan LS (2004) Grafting of vapor-grown carbon nanofibers via in-situ polycondensation of 3-phenoxybenzoic acid in poly (phosphoric acid). Macromolecules 37:8278–8285

    Article  CAS  Google Scholar 

  85. Lu YL, Ye FY, Mao LX, Li Y, Zhang LQ (2011) Micro-structural evolution of rubber/clay nanocomposites with vulcanization process. Express Polym Lett 5:777–787

    Article  CAS  Google Scholar 

  86. Coleman JN, Khan U, Blau WJ, Gunko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652

    Article  CAS  Google Scholar 

  87. Du JH, Bai J, Cheng HM (2007) The present status and key problems of carbon nanotube based polymer composites. eXPRESS Polym Lett 1:253–273

    Google Scholar 

  88. Jiang C, He H, Jiang H, Ma L, Jia D M (2013) Nano-lignin filled natural rubber composites: preparation and characterization. eXPRESS Polym Lett 7:480–493

    Google Scholar 

  89. Majdzadeh-Ardakani K, Ardakani Sh Sadeghi- (2010) Experimental investigation of mechanical properties of starch/natural rubber/clay nanocomposites. Digest J Nanomater Biostructures 5:307–316

    Google Scholar 

  90. Lopez-Manchado MA, Herrero B, Arroyo M (2003) Preparation and characterization of organoclay nanocomposites based on natural rubber. Polym Int 52:1070–1077

    Article  CAS  Google Scholar 

  91. Andrews R, Jacques D, Minot M, Rantell T (2002) Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol Mater Eng 287:395–403

    Article  CAS  Google Scholar 

  92. Breuer O, Sundararaj U (2004) Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos 25:630–645

    Article  CAS  Google Scholar 

  93. Liu Q, Zhang D, Fan T, Gu J, Miyamoto Y, Chen Z (2008) Amorphous carbon-matrix composites with interconnected carbon nano-ribbon networks for electromagnetic interference shielding. Carbon 46(3):461–465

    Article  CAS  Google Scholar 

  94. Zhang CS, Ni QQ, Fu SY, Kurashiki K (2007) Electromagnetic interference shielding effect of nanocomposites with carbon nanotube and shape memory polymer. Compos Sci Technol 67:2973–2980

    Article  CAS  Google Scholar 

  95. Yakuphanoglu F, Al-Ghamdi AA, El-Tantawy F (2014) Electromagnetic interference shielding properties of nanocomposites for commercial electronic devices. Microsyst Technol 1–9

    Google Scholar 

  96. Tanrattanakul V, Bunchuay A (2007) Microwave absorbing rubber composites containing carbon black and aluminum powder. J Appl Polym Sci 105:2036–2045

    Article  CAS  Google Scholar 

  97. Kong I, Ahmada S, Abdullah MH, Hui D, Yusoff AN, Puryanti D (2010) Magnetic and microwave absorbing properties of magnetite-thermoplastic natural rubber nanocomposites. J Mag Mag Mater 322:3401–3409

    Article  CAS  Google Scholar 

  98. Al-Hartomy OA, Al-Ghamdi A, Dishovsky N, Shtarkova R, Iliev V, Mutlay I, El-Tantawy F (2012) Dielectric and microwave properties of natural rubber based nanocomposites containing graphene. Mater Sci Appl 3:453

    CAS  Google Scholar 

  99. Arief PT, Kean CA, Jadranka T (2012) A novel polypyrrole and natural rubber based flexible large strain sensor. Sens Actuators B 20:166

    Google Scholar 

  100. He Q, Yuan T, Zhang X, Guo S, Liu J, Liu J, Liu X, Sun L, Wei S, Guo Z (2014) Heavy duty piezoresistivity induced strain sensing natural rubber/carbon black nanocomposites reinforced with different carbon nanofillers. Mater Res Express 1(3):035029

    Article  CAS  Google Scholar 

  101. Tadakaluru S, Thongsuwan W, Singjai P (2014) Stretchable and flexible high-strain sensors made using carbon nanotubes and graphite films on natural rubber. Sensors 14:868–876

    Article  CAS  Google Scholar 

  102. Knite M, Tupureina V, Fuith A, Zavickis J, Teteris V (2007) Polyisoprene—multi-wall carbon nanotube composites for sensing strain. Mater Sci Eng C 27:1125

    Article  CAS  Google Scholar 

  103. Herculano RD, Brunello CA, Graeff CFO (2007) Optimization of a novel nitric oxide sensor using a latex rubber. J Appl Sci 7:3801

    Article  CAS  Google Scholar 

  104. John H, Joseph R, Mathew KT (2007) Dielectric behavior of natural rubber composites in microwave fields. J Appl Polym Sci 103:2682–2686

    Article  CAS  Google Scholar 

  105. Makled HM (2012) Dielectric properties of high coercivity barium ferrite–natural rubber composites. J Appl Polym Sci 126:969

    Article  CAS  Google Scholar 

  106. Haseena AP, Unnikrishnan G, Kalaprasad G (2007) Dielectric properties of short sisal/coir hybrid fibre reinforced natural rubber composites. Compos Interf 14:763–786

    Article  CAS  Google Scholar 

  107. Popielarz R, Chiang CK, Nozaki R, Obrzut J (2001) Dielectric properties of polymer/ferroelectric ceramic composites from 100 Hz to 10 GHz. Macromolecules 34:5910–5915

    Article  CAS  Google Scholar 

  108. Marzinotto M, Santulli C, Mazzetti C (2007) Dielectric properties of oil palm-natural rubber biocomposites. IEEE Electr Insul Dielectr Phenom CEIDP 9777934:584–587

    Google Scholar 

  109. Jacob M, Varughese KT, Thomas S (2006) Dielectric characteristics of sisal—oil palm hybrid biofibre reinforced natural rubber biocomposites. J Mater Sci 41:5538–5547

    Article  CAS  Google Scholar 

  110. Jacob M, Thomas S, Varughese KT (2004) Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Compos Sci Tech 64:955–965

    Article  CAS  Google Scholar 

  111. Tangboriboon N, Uttanawanit N, Longtong M, Wongpinthong P, Sirivat A, Kunanuruksapong R (2010) Electrical and electrorheological properties of alumina/natural rubber (STR XL). Compos Compos Mater 3:656–671

    CAS  Google Scholar 

  112. Elimat ZM, Zihlif AM, Ragosta G (2008) Study of ac electrical properties of aluminium–epoxy composites. J Phys D Appl Phys 41:165408

    Article  CAS  Google Scholar 

  113. Musameh SM, Abdelazeez MK, Ahmad MS, Zihlif AM, Malinconico M, Martuscelli E, Ragosta G (1991) Some electrical properties of aluminum-epoxy composite. Mater Sci Eng B 10:29–33

    Google Scholar 

  114. Sadasivuni KK, Ponnamma D, Kumar B, Strankowski M, Cardinaels R, Moldenaers P, Thomas S, Grohens Y (2014) Dielectric properties of modified graphene oxide filled polyurethane nanocomposites and its correlation with rheology. Compos Sci Technol 104:18–25

    Article  CAS  Google Scholar 

  115. Dang ZM, Nan CW, Xie D, Zhang YH, Tjong SC (2004) Dielectric behavior and dependence of percolation threshold on the conductivity of fillers in polymer-semiconductor composites. Appl Phys Lett 85:97–99

    Article  CAS  Google Scholar 

  116. Sinclair DC, Adams TB, Morrison FD, West AR (2002) CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl Phys Lett 80:2153–2155

    Article  CAS  Google Scholar 

  117. Jana PK, Sarkar S, Sakata H, Watanabe T, Chaudhuri BK (2008) Microstructure and dielectric properties of NaxTiyNi1 − x−yO (x = 0.05–0.30, y = 0.02). J Phys D Appl Phys 41:65403

    Article  CAS  Google Scholar 

  118. Pohl HA (1978) Dielectrophoresis. Cambridge University Press, London

    Google Scholar 

  119. Jamal EMA, Joy PA, Kurian P, Anantharaman MR (2009) Synthesis of nickel–rubber nanocomposites and evaluation of their dielectric properties. Mater Sci Eng B 156:24–31

    Article  CAS  Google Scholar 

  120. Psarras GC, Gatos KG, Karahaliou PK, Georga SN, Krontiras CA, Karger-Kocsis J (2007) Relaxation phenomena in rubber/layered silicate nanocomposites. eXPRESS Polym Lett 1:837–845

    Article  CAS  Google Scholar 

  121. Kornev A, Bukanov A, Sheverdiaev O (2005) Technology of elastomeric materials, in Russian. Istek, Moscow

    Google Scholar 

  122. Banerjee P, Biswas S (2011) Dielectric properties of EVA rubber composites at microwave frequencies theory, instrumentation and measurements. J Micro Power Electromag Energ 45:24–29

    Google Scholar 

  123. Hernández M, Bernal MM, Verdejo R, Ezquerra TA, López-Manchado MA (2012) Overall performance of natural rubber/graphene nanocomposites. Compos Sci Technol 73:40–46

    Article  CAS  Google Scholar 

  124. Yu J, Andersson O (2009) Thermal conductivity, heat capacity, and cross-linking of polyisoprene/single-wall carbon nanotube composites under high pressure. Macromolecules 42:9295–9301

    Article  CAS  Google Scholar 

  125. Wei C, Srivastava D, Cho K (2002) Thermal expansion and diffusion coefficients of carbon nanotube-polymer composite. Nano Lett 2:647–650

    Article  CAS  Google Scholar 

  126. Flaifel MH, Ahmad SH, Hassan A, Bahri S, Tarawneh MA, Yu L (2013) Thermal conductivity and dynamic mechanical analysis of NiZn ferrite nanoparticles filled thermoplastic natural rubber nanocomposites. Compos Part B 52:334–339

    Article  CAS  Google Scholar 

  127. Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K (2006) Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47:2036–2045

    Article  CAS  Google Scholar 

  128. Potts JR, Shankar O, Du L, Ruoff RS (2012) Processing–morphology–property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites. Macromolecules 45:6045–6055

    Article  CAS  Google Scholar 

  129. Zakaria MZ, Ahmad SH (2013) Investigation on thermal conductivity and mechanical properties of thermoplastic natural rubber filled with alumina and boron carbide nanocomposites. Energ Environ Eng J 2:11–14

    CAS  Google Scholar 

  130. Zhan Y, Wu J, Xia H, Yan N, Fei G, Yuan G (2011) Dispersion and exfoliation of graphene in rubber by an ultrasonically-assisted latex mixing and in situ reduction process. Macromol Mater Eng 296:590–602

    Article  CAS  Google Scholar 

  131. Meera AP, Tlili R, Boudenne A, Ibos L, Poornima V, Thomas S, Candau Y (2012) Thermophysical and mechanical properties of TiO2 and silica nanoparticle-filled natural rubber composites. J Elast Plast 44:1–14

    Article  CAS  Google Scholar 

  132. Zhamu A, Bor JZ (2011) Pristine nano graphene-modified tyres. US Patent 2011/0046289A1

    Google Scholar 

  133. Ponnamma D, Sadasivuni KK, Strankowski M, Moldenaers P, Thomas S, Grohens Y (2013) Interrelated shape memory and Payne effect in polyurethane/graphene oxide nanocomposites. RSC Adv 3:16068

    Article  CAS  Google Scholar 

  134. Fukahori Y (2010) Mechanism of the self-reinforcement of cross-linked NR generated through the strain-induced crystallization. Polymer 51:1621–1631

    Article  CAS  Google Scholar 

  135. Heuwers B, Quitmann D, Hoeher R, Reinders FM, Tiemeyer S, Sternemann C, Tolan M, Katzenberg F, Tiller JC (2013) Stress-induced stabilization of crystals in shape memory natural rubber. Macromol Rapid Commun 34:180–184

    Article  CAS  Google Scholar 

  136. Katzenberg F, Heuwers B, Tiller JC (2011) Superheated rubber for cold storage. Adv Mater 23:1909–1911

    Article  CAS  Google Scholar 

  137. Heuwers B, Beckel A, Krieger A, Katzenberg F, Tiller JC (2013) Shape-memory natural rubber: an exceptional material for strain and energy storage. Macromol Chem Phys 214:912

    Article  CAS  Google Scholar 

  138. Bruns N, Tiller JC (2006) Nanophasic amphiphilic conetworks with a fluorophilic phase. Macromolecules 39:4386

    Article  CAS  Google Scholar 

  139. Quitmann D, Gushterov N, Sadowski G, Katzenberg F, Tiller JC (2013) Solvent-sensitive reversible stress-response of shape memory natural rubber. ACS Appl Mater Interf 5:3504

    Article  CAS  Google Scholar 

  140. Jincheng W, Yan G (2011) Hyperbranched intumescent flame-retardant agent: application to natural rubber composites. J Appl Polym Sci 122:3474

    Article  CAS  Google Scholar 

  141. Niamlang S, Thongchai S, Pawananant N, Sirivat A (2013) The electromechanical properties of crosslinked natural rubber. Energy Procedia 34:697–704

    Article  CAS  Google Scholar 

  142. Puvanatvattana T, Chotpattananont D, Hiamtup P, Niamlang S, Sirivat A, Jamieson AM (2006) Electric field induced stress moduli in polythiophene/polyisoprene elastomer blends. React Funct Polym 66:1575–1588

    Article  CAS  Google Scholar 

  143. Sirivat A, Petcharoen K, Pornchaisiriarun Y, Phansa-Ard C, Tangboriboon N (2014) Lead zirconate (PbZrO3) embedded in natural rubber as electroactive elastomer composites. J Innovative Opt Health Sci 7:1450016

    Article  CAS  Google Scholar 

  144. Tangboriboon N, Datsanae S, Onthong A, Kunanuruksapong R, Sirivat A (2012) Electromechanical responses of dielectric elastomer composite actuators based on natural rubber and alumina. J Elastomers Plast 45:143–161

    Article  CAS  Google Scholar 

  145. Niamlang S, Thongchai S, Pawananant N, Sirivat A (2013) The electromechanical properties of crosslinked natural rubber. Energy Procedia 34:697–704

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge the University Grants Commission and the Department of Atomic Energy Consortium, India, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepalekshmi Ponnamma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ponnamma, D., Sadasivuni, K.K., Varughese, K.T., Thomas, S., AlMa’adeed, M.AA. (2016). Natural Polyisoprene Composites and Their Electronic Applications. In: Ponnamma, D., Sadasivuni, K., Wan, C., Thomas, S., Al-Ali AlMa'adeed, M. (eds) Flexible and Stretchable Electronic Composites. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-23663-6_1

Download citation

Publish with us

Policies and ethics