Skip to main content

Pulmonary Hypertension in Patients Without Pulmonary Arterial Hypertension

  • Chapter
Pulmonary Hypertension

Abstract

Pulmonary hypertension (PH) in clinical practice is most commonly secondary to chronic cardiac or pulmonary disease. PH secondary to left heart disease, Group 2 PH, can result from heart failure with reduced ejection fraction, heart failure with preserved ejection fraction, valvular heart disease, among others. PH secondary to hypoxic pulmonary disease, classified as Group 3 PH, is most often associated with chronic obstructive pulmonary disease, interstitial lung disease, obesity hypoventilation syndrome and obstructive sleep apnea. In this chapter we will discuss the epidemiology, cellular mechanisms, clinical diagnosis and evaluation, management and outcomes of Group 2 and Group 3 PH. Also highlighted are overlap syndromes, that may have characteristics of Group 1, 2 and 3 PH. These syndromes include Systemic Sclerosis, Lymphangioleiomyomatosis, Pulmonary Langerhans Cells Histiocytosis and Sarcoidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strange G, et al. Pulmonary hypertension: prevalence and mortality in the Armadale echocardiography cohort. Heart. 2012;98(24):1805–11.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Simonneau G, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D34–41.

    Article  PubMed  Google Scholar 

  3. Vachiery JL, et al. Pulmonary hypertension due to left heart diseases. J Am Coll Cardiol. 2013;62(25 Suppl):D100–8.

    Article  PubMed  Google Scholar 

  4. Fang JC, DeMarco T, Givertz MM, Borlaug BA, Lewis GD, Rame JE, Gomberg-Maitland M, Murali S, Frantz RP, McGlothlin D, Horn EM and Benza RL. World Health Organization Pulmonary Hypertension group 2: pulmonary hypertension due to left heart disease in the adult–a summary statement from the Pulmonary Hypertension Council of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2012;31:913–33.

    Google Scholar 

  5. Seeger W, et al. Pulmonary hypertension in chronic lung diseases. J Am Coll Cardiol. 2013;62(25 Suppl):D109–16.

    Article  PubMed  Google Scholar 

  6. McLaughlin VV, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol. 2009;53(17):1573–619.

    Article  PubMed  Google Scholar 

  7. Perez VA, Haddad F, Zamanian RT. Diagnosis and management of pulmonary hypertension associated with left ventricular diastolic dysfunction. Pulm Circ. 2012;2(2):163–9.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Lam CS, et al. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol. 2009;53(13):1119–26.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Costard-Jackle A, Fowler MB. Influence of preoperative pulmonary artery pressure on mortality after heart transplantation: testing of potential reversibility of pulmonary hypertension with nitroprusside is useful in defining a high risk group. J Am Coll Cardiol. 1992;19(1):48–54.

    Article  CAS  PubMed  Google Scholar 

  10. Ghio S, et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol. 2001;37(1):183–8.

    Article  CAS  PubMed  Google Scholar 

  11. Grigioni F, et al. Prognostic implications of serial assessments of pulmonary hypertension in severe chronic heart failure. J Heart Lung Transplant. 2006;25(10):1241–6.

    Article  PubMed  Google Scholar 

  12. Abramson SV, et al. Pulmonary hypertension predicts mortality and morbidity in patients with dilated cardiomyopathy. Ann Intern Med. 1992;116(11):888–95.

    Article  CAS  PubMed  Google Scholar 

  13. Butler J, et al. Pre-transplant reversible pulmonary hypertension predicts higher risk for mortality after cardiac transplantation. J Heart Lung Transplant. 2005;24(2):170–7.

    Article  PubMed  Google Scholar 

  14. Galie N, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J. 2009;30(20):2493–537.

    Article  PubMed  Google Scholar 

  15. Guazzi M. Alveolar gas diffusion abnormalities in heart failure. J Card Fail. 2008;14(8):695–702.

    Article  PubMed  Google Scholar 

  16. Haddad F, et al. Pulmonary hypertension associated with left heart disease: characteristics, emerging concepts, and treatment strategies. Prog Cardiovasc Dis. 2011;54(2):154–67.

    Article  PubMed  Google Scholar 

  17. West JB, Mathieu-Costello O. Vulnerability of pulmonary capillaries in heart disease. Circulation. 1995;92(3):622–31.

    Article  CAS  PubMed  Google Scholar 

  18. Elliott AR, et al. Short-term reversibility of ultrastructural changes in pulmonary capillaries caused by stress failure. J Appl Physiol. 1992;73(3):1150–8.

    CAS  PubMed  Google Scholar 

  19. Palestini P, et al. Composition, biophysical properties, and morphometry of plasma membranes in pulmonary interstitial edema. Am J Physiol Lung Cell Mol Physiol. 2002;282(6):L1382–90.

    Article  CAS  PubMed  Google Scholar 

  20. Townsley MI, et al. Pulmonary microvascular permeability. Responses to high vascular pressure after induction of pacing-induced heart failure in dogs. Circ Res. 1995;77(2):317–25.

    Article  CAS  PubMed  Google Scholar 

  21. Rich S, Rabinovitch M. Diagnosis and treatment of secondary (non-category 1) pulmonary hypertension. Circulation. 2008;118(21):2190–9.

    Article  PubMed  Google Scholar 

  22. Olson TP, et al. Repeat length polymorphism of the serotonin transporter gene influences pulmonary artery pressure in heart failure. Am Heart J. 2007;153(3):426–32.

    Article  CAS  PubMed  Google Scholar 

  23. Du L, et al. Signaling molecules in nonfamilial pulmonary hypertension. N Engl J Med. 2003;348(6):500–9.

    Article  CAS  PubMed  Google Scholar 

  24. Loscalzo J, Welch G. Nitric oxide and its role in the cardiovascular system. Prog Cardiovasc Dis. 1995;38(2):87–104.

    Article  CAS  PubMed  Google Scholar 

  25. Loscalzo J. Nitric oxide and vascular disease. N Engl J Med. 1995;333(4):251–3.

    Article  CAS  PubMed  Google Scholar 

  26. Yu SM, Hung LM, Lin CC. cGMP-elevating agents suppress proliferation of vascular smooth muscle cells by inhibiting the activation of epidermal growth factor signaling pathway. Circulation. 1997;95(5):1269–77.

    Article  CAS  PubMed  Google Scholar 

  27. Ooi H, Colucci WS, Givertz MM. Endothelin mediates increased pulmonary vascular tone in patients with heart failure: demonstration by direct intrapulmonary infusion of sitaxsentan. Circulation. 2002;106(13):1618–21.

    Article  CAS  PubMed  Google Scholar 

  28. Porter TR, et al. Endothelium-dependent pulmonary artery responses in chronic heart failure: influence of pulmonary hypertension. J Am Coll Cardiol. 1993;22(5):1418–24.

    Article  CAS  PubMed  Google Scholar 

  29. Cooper CJ, et al. Role of nitric oxide in the local regulation of pulmonary vascular resistance in humans. Circulation. 1996;93(2):266–71.

    Article  CAS  PubMed  Google Scholar 

  30. Cooper CJ, et al. The influence of basal nitric oxide activity on pulmonary vascular resistance in patients with congestive heart failure. Am J Cardiol. 1998;82(5):609–14.

    Article  CAS  PubMed  Google Scholar 

  31. Radomski MW, Palmer RM, Moncada S. An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci U S A. 1990;87(13):5193–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Thenappan T, et al. Clinical characteristics of pulmonary hypertension in patients with heart failure and preserved ejection fraction. Circ Heart Fail. 2011;4(3):257–65.

    Article  PubMed  Google Scholar 

  33. Hoeper MM, et al. Diagnosis, assessment, and treatment of non-pulmonary arterial hypertension pulmonary hypertension. J Am Coll Cardiol. 2009;54(1 Suppl):S85–96.

    Article  PubMed  Google Scholar 

  34. Nagueh SF, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr. 2009;22(2):107–33.

    Article  PubMed  Google Scholar 

  35. Opotowsky AR, et al. A simple echocardiographic prediction rule for hemodynamics in pulmonary hypertension. Circ Cardiovasc Imaging. 2012;5(6):765–75.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: Part I: diagnosis, prognosis, and measurements of diastolic function. Circulation. 2002;105(11):1387–93.

    Article  PubMed  Google Scholar 

  37. Paulus WJ, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J. 2007;28(20):2539–50.

    Article  PubMed  Google Scholar 

  38. Ryan JJ, et al. Current practice for determining pulmonary capillary wedge pressure predisposes to serious errors in the classification of patients with pulmonary hypertension. Am Heart J. 2012;163(4):589–94.

    Article  PubMed  Google Scholar 

  39. Drakos SG, et al. Effect of reversible pulmonary hypertension on outcomes after heart transplantation. J Heart Lung Transplant. 2007;26(4):319–23.

    Article  PubMed  Google Scholar 

  40. Borlaug BA, et al. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail. 2010;3(5):588–95.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Tolle JJ, et al. Exercise-induced pulmonary arterial hypertension. Circulation. 2008;118(21):2183–9.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Maron BA, et al. The invasive cardiopulmonary exercise test. Circulation. 2013;127(10):1157–64.

    Article  PubMed  Google Scholar 

  43. Hoeper MM, et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D42–50.

    Article  PubMed  Google Scholar 

  44. Fox BD, et al. High prevalence of occult left heart disease in scleroderma-pulmonary hypertension. Eur Respir J. 2013;42(4):1083–91.

    Article  PubMed  Google Scholar 

  45. Fujimoto N, et al. Hemodynamic responses to rapid saline loading: the impact of age, sex, and heart failure. Circulation. 2013;127(1):55–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Nishimura RA, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(22):e57–185.

    Google Scholar 

  47. Nishimura RA, et al. 2014 AHA/ACC Guideline for the Management of Patients with Valvular Heart Disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(23):2440–92.

    Article  PubMed  Google Scholar 

  48. Levine MJ, et al. Progressive improvement in pulmonary vascular resistance after percutaneous mitral valvuloplasty. Circulation. 1989;79(5):1061–7.

    Article  CAS  PubMed  Google Scholar 

  49. Zielinski T, et al. Pulmonary hemodynamics at rest and effort, 6 and 12 months after mitral valve replacement: a slow regression of effort pulmonary hypertension. Int J Cardiol. 1993;42(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  50. Nishimura RA, Otto C. 2014 ACC/AHA valve guidelines: earlier intervention for chronic mitral regurgitation. Heart. 2014;100(12):905–7.

    Article  PubMed  Google Scholar 

  51. Barbieri A, et al. Prognostic and therapeutic implications of pulmonary hypertension complicating degenerative mitral regurgitation due to flail leaflet: a multicenter long-term international study. Eur Heart J. 2011;32(6):751–9.

    Article  PubMed  Google Scholar 

  52. Li M, et al. Impact of valve prosthesis-patient mismatch on pulmonary arterial pressure after mitral valve replacement. J Am Coll Cardiol. 2005;45(7):1034–40.

    Article  PubMed  Google Scholar 

  53. Crawford Jr FA. Residual pulmonary artery hypertension after mitral valve replacement: size matters! J Am Coll Cardiol. 2005;45(7):1041–2.

    Article  PubMed  Google Scholar 

  54. Goldstone AB, et al. Incidence, epidemiology, and prognosis of residual pulmonary hypertension after mitral valve repair for degenerative mitral regurgitation. Am J Cardiol. 2011;107(5):755–60.

    Article  PubMed  Google Scholar 

  55. Casaclang-Verzosa G, et al. E/Ea is the major determinant of pulmonary artery pressure in moderate to severe aortic stenosis. J Am Soc Echocardiogr. 2008;21(7):824–7.

    Article  PubMed  Google Scholar 

  56. Johnson LW, et al. Pulmonary hypertension in isolated aortic stenosis. Hemodynamic correlations and follow-up. J Thorac Cardiovasc Surg. 1988;95(4):603–7.

    CAS  PubMed  Google Scholar 

  57. Silver K, et al. Pulmonary artery hypertension in severe aortic stenosis: incidence and mechanism. Am Heart J. 1993;125(1):146–50.

    Article  CAS  PubMed  Google Scholar 

  58. Faggiano P, et al. Pulmonary artery hypertension in adult patients with symptomatic valvular aortic stenosis. Am J Cardiol. 2000;85(2):204–8.

    Article  CAS  PubMed  Google Scholar 

  59. Kapoor N, Varadarajan P, Pai RG. Echocardiographic predictors of pulmonary hypertension in patients with severe aortic stenosis. Eur J Echocardiogr. 2008;9(1):31–3.

    PubMed  Google Scholar 

  60. Melby SJ, et al. Impact of pulmonary hypertension on outcomes after aortic valve replacement for aortic valve stenosis. J Thorac Cardiovasc Surg. 2011;141(6):1424–30.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Malouf JF, et al. Severe pulmonary hypertension in patients with severe aortic valve stenosis: clinical profile and prognostic implications. J Am Coll Cardiol. 2002;40(4):789–95.

    Article  PubMed  Google Scholar 

  62. Sinning JM, et al. Decrease of pulmonary hypertension impacts on prognosis after transcatheter aortic valve replacement. EuroIntervention. 2014;9(9):1042–9.

    Article  PubMed  Google Scholar 

  63. Khandhar S, et al. Survival benefit of aortic valve replacement in patients with severe aortic regurgitation and pulmonary hypertension. Ann Thorac Surg. 2009;88(3):752–6.

    Article  PubMed  Google Scholar 

  64. Naidoo DP, et al. Pulmonary hypertension in aortic regurgitation: early surgical outcome. Q J Med. 1991;80(291):589–95.

    CAS  PubMed  Google Scholar 

  65. Guglin M, Khan H. Pulmonary hypertension in heart failure. J Card Fail. 2010;16(6):461–74.

    Article  PubMed  Google Scholar 

  66. Delgado JF, et al. Impact of mild pulmonary hypertension on mortality and pulmonary artery pressure profile after heart transplantation. J Heart Lung Transplant. 2001;20(9):942–8.

    Article  CAS  PubMed  Google Scholar 

  67. Mikus E, et al. Reversibility of fixed pulmonary hypertension in left ventricular assist device support recipients. Eur J Cardiothorac Surg. 2011;40(4):971–7.

    PubMed  Google Scholar 

  68. Kiefer TL, Bashore TM. Pulmonary hypertension related to left-sided cardiac pathology. Pulm Med. 2011;2011:381787.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Malkowska AM, Waring WS. Constrictive pericarditis is an easily overlooked cause of right heart failure: a case report. Cases J. 2008;1(1):27.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Brunner NW, et al. A case of recurrent pericardial constriction presenting with severe pulmonary hypertension. Pulm Circ. 2013;3(2):436–9.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Guazzi M, et al. The effects of phosphodiesterase-5 inhibition with sildenafil on pulmonary hemodynamics and diffusion capacity, exercise ventilatory efficiency, and oxygen uptake kinetics in chronic heart failure. J Am Coll Cardiol. 2004;44(12):2339–48.

    Article  CAS  PubMed  Google Scholar 

  72. Lewis GD, et al. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation. 2007;116(14):1555–62.

    Article  CAS  PubMed  Google Scholar 

  73. Guazzi M, et al. Long-term use of sildenafil in the therapeutic management of heart failure. J Am Coll Cardiol. 2007;50(22):2136–44.

    Article  CAS  PubMed  Google Scholar 

  74. Lewis GD, et al. Determinants of ventilatory efficiency in heart failure: the role of right ventricular performance and pulmonary vascular tone. Circ Heart Fail. 2008;1(4):227–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Behling A, et al. Effects of 5′-phosphodiesterase four-week long inhibition with sildenafil in patients with chronic heart failure: a double-blind, placebo-controlled clinical trial. J Card Fail. 2008;14(3):189–97.

    Article  CAS  PubMed  Google Scholar 

  76. Guazzi M, et al. Six months of Sildenafil therapy improves heart rate recovery in patients with heart failure. Int J Cardiol. 2009;136(3):341–3.

    Article  PubMed  Google Scholar 

  77. Guazzi M, et al. Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation. 2011;124(2):164–74.

    Article  CAS  PubMed  Google Scholar 

  78. Guazzi M, et al. PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. Circ Heart Fail. 2011;4(1):8–17.

    Article  CAS  PubMed  Google Scholar 

  79. Guazzi M, Vicenzi M, Arena R. Phosphodiesterase 5 inhibition with sildenafil reverses exercise oscillatory breathing in chronic heart failure: a long-term cardiopulmonary exercise testing placebo-controlled study. Eur J Heart Fail. 2012;14(1):82–90.

    Article  CAS  PubMed  Google Scholar 

  80. Reichenbach A, Al-Hiti H, Malek I, Pirk J, Goncalvesova E, Kautzner J, Melenovsky V. The effects of phosphodiesterase 5 inhibition on hemodynamics, functional status and survival in advanced heart failure and pulmonary hypertension: A case-control study. Int J Cardiol. 2013;168:60–5.

    Google Scholar 

  81. Redfield MM, et al. PhosphdiesteRasE-5 Inhibition to Improve CLinical Status and EXercise Capacity in Diastolic Heart Failure (RELAX) trial: rationale and design. Circ Heart Fail. 2012;5(5):653–9.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Givertz MM, et al. Acute endothelin A receptor blockade causes selective pulmonary vasodilation in patients with chronic heart failure. Circulation. 2000;101(25):2922–7.

    Article  CAS  PubMed  Google Scholar 

  83. Luscher TF, et al. Hemodynamic and neurohumoral effects of selective endothelin A (ET(A)) receptor blockade in chronic heart failure: the Heart Failure ET(A) Receptor Blockade Trial (HEAT). Circulation. 2002;106(21):2666–72.

    Article  PubMed  CAS  Google Scholar 

  84. Perez-Villa F, et al. Initial experience with bosentan therapy in patients considered ineligible for heart transplantation because of severe pulmonary hypertension. Clin Transplant. 2006;20(2):239–44.

    Article  PubMed  Google Scholar 

  85. Kaluski E, et al. Clinical and hemodynamic effects of bosentan dose optimization in symptomatic heart failure patients with severe systolic dysfunction, associated with secondary pulmonary hypertension–a multi-center randomized study. Cardiology. 2008;109(4):273–80.

    Google Scholar 

  86. Hefke T, Zittermann A, Fuchs U, Schulte-Eistrup S, Gummert JF, Schulz U. Bosentan effects on hemodynamics and clinical outcome in heart failure patients with pulmonary hypertension awaiting cardiac transplantation. J Thorac Cardiovasc Surg. 2012;60:26–34.

    Google Scholar 

  87. Padeletti M, et al. Effect of bosentan on pulmonary hypertension secondary to systolic heart failure. Pharmacology. 2013;92(5–6):281–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Montalescot G, et al. Effects of prostacyclin on the pulmonary vascular tone and cardiac contractility of patients with pulmonary hypertension secondary to end-stage heart failure. Am J Cardiol. 1998;82(6):749–55.

    Article  CAS  PubMed  Google Scholar 

  89. Weston MW, Isaac BF, Crain C. The use of inhaled prostacyclin in nitroprusside-resistant pulmonary artery hypertension. J Heart Lung Transplant. 2001;20(12):1340–4.

    Article  CAS  PubMed  Google Scholar 

  90. Sablotzki A, et al. Iloprost improves hemodynamics in patients with severe chronic cardiac failure and secondary pulmonary hypertension. Can J Anaesth. 2002;49(10):1076–80.

    Article  PubMed  Google Scholar 

  91. von Scheidt W, et al. Prostaglandin E1 testing in heart failure-associated pulmonary hypertension enables transplantation: the PROPHET study. J Heart Lung Transplant. 2006;25(9):1070–6.

    Article  Google Scholar 

  92. Serra W, et al. Benefit of prostaglandin infusion in severe heart failure: preliminary clinical experience of repetitive administration. Int J Cardiol. 2011;146(1):e10–5.

    Article  PubMed  Google Scholar 

  93. Bonderman D, et al. Riociguat for patients with pulmonary hypertension caused by systolic left ventricular dysfunction: a phase IIb double-blind, randomized, placebo-controlled, dose-ranging hemodynamic study. Circulation. 2013;128(5):502–11.

    Article  CAS  PubMed  Google Scholar 

  94. Califf RM, et al. A randomized controlled trial of epoprostenol therapy for severe congestive heart failure: The Flolan International Randomized Survival Trial (FIRST). Am Heart J. 1997;134(1):44–54.

    Article  CAS  PubMed  Google Scholar 

  95. Kalra PR, Moon JC, Coats AJ. Do results of the ENABLE (Endothelin Antagonist Bosentan for Lowering Cardiac Events in Heart Failure) study spell the end for non-selective endothelin antagonism in heart failure? Int J Cardiol. 2002;85(2–3):195–7.

    Article  PubMed  Google Scholar 

  96. Nagendran J, et al. Endothelin axis is upregulated in human and rat right ventricular hypertrophy. Circ Res. 2013;112(2):347–54.

    Article  CAS  PubMed  Google Scholar 

  97. Cooper TJ, Guazzi M, Al-Mohammad A, Amir O, Bengal T, Cleland JG, Dickstein K. Sildenafil in heart failure (silhf). An investigator-initiated multinational randomized controlled clinical trial: Rationale and design. Eur J Heart Fail. 2013;15:119–22.

    Google Scholar 

  98. New England Research Institutes; National Heart, Lung, and Blood Institute Massachusetts General Hospital. Phosphodiesterase type 5 inhibition with tadalafil changes outcomes in heart failure (PITCH-HF). In: Clinicaltrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US) 2013. Available from: http://clinicaltrials.gov/ct2/show/NCT01910389. NLM identifier: NCT01910389.

  99. Redfield MM, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2013;309(12):1268–77.

    Article  CAS  PubMed  Google Scholar 

  100. Nativi-Nicolau J, Ryan JJ, Fang JC. Current therapeutic approach in heart failure with preserved ejection fraction. Heart Fail Clin. 2014;10(3):525–38.

    Article  PubMed  Google Scholar 

  101. Bayer. Phase IIb Safety and Efficacy Study of Four Dose Regimens of BAY1021189 in Patients with Heart Failure and Preserved Ejection Fraction Suffering from Worsening Chronic Heart Failure (SOCRATES-PRESERVED). In: Clinicaltrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US) 2013. Available from: http://clinicaltrials.gov/ct2/show/NCT01951638. NLM identifier: NCT01951638.

  102. Actelion. Safety and tolerability of macitentan in subjects with combined pre- and post-capillary pulmonary hypertension due to left ventricular dysfunction (MELODY-1). In: Clinicaltrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US) 2014. Available from: http://clinicaltrials.gov/ct2/show/NCT02070991. NLM identifier: NCT02070991.

  103. Benza RL, Raina A, Abraham WT, Adamson PB, Lindenfeld J, Miller AB, Bourge RC, Bauman J, Yadav J. Pulmonary hypertension related to left heart disease: Insight from a wireless implantable hemodynamic monitor. J Heart Lung Transplant. 2015;34(3):329–37.

    Google Scholar 

  104. Abraham WT, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377(9766):658–66.

    Article  PubMed  Google Scholar 

  105. Hyduk A, et al. Pulmonary hypertension surveillance – United States, 1980–2002. MMWR Surveill Summ. 2005;54(5):1–28.

    PubMed  Google Scholar 

  106. Chaouat A, Naeije R, Weitzenblum E. Pulmonary hypertension in COPD. Eur Respir J. 2008;32(5):1371–85.

    Article  CAS  PubMed  Google Scholar 

  107. Minai OA, Chaouat A, Adnot S. Pulmonary hypertension in COPD: epidemiology, significance, and management: pulmonary vascular disease: the global perspective. Chest. 2010;137(6 Suppl):39S–51.

    Article  PubMed  Google Scholar 

  108. Minai OA, et al. Clinical characteristics and prediction of pulmonary hypertension in severe emphysema. Respir Med. 2014;108(3):482–90.

    Article  PubMed  Google Scholar 

  109. Stark RD, Finnegan P, Bishop JM. Daily requirement of oxygen to reverse pulmonary hypertension in patients with chronic bronchitis. Br Med J. 1972;3(5829):724–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Oswald-Mammosser M, et al. Prognostic factors in COPD patients receiving long-term oxygen therapy. Importance of pulmonary artery pressure. Chest. 1995;107(5):1193–8.

    Article  CAS  PubMed  Google Scholar 

  111. Kessler R, et al. Predictive factors of hospitalization for acute exacerbation in a series of 64 patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;159(1):158–64.

    Article  CAS  PubMed  Google Scholar 

  112. Lettieri CJ, et al. Prevalence and outcomes of pulmonary arterial hypertension in advanced idiopathic pulmonary fibrosis. Chest. 2006;129(3):746–52.

    Article  PubMed  Google Scholar 

  113. Nadrous HF, et al. Pulmonary hypertension in patients with idiopathic pulmonary fibrosis. Chest. 2005;128(4):2393–9.

    Article  PubMed  Google Scholar 

  114. Jankowich MD, Rounds SI. Combined pulmonary fibrosis and emphysema syndrome: a review. Chest. 2012;141(1):222–31.

    Article  PubMed Central  PubMed  Google Scholar 

  115. Mapel DW, et al. Idiopathic pulmonary fibrosis: survival in population based and hospital based cohorts. Thorax. 1998;53(6):469–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Corte TJ, Wort SJ, Wells AU. Pulmonary hypertension in idiopathic pulmonary fibrosis: a review. Sarcoidosis Vasc Diffuse Lung Dis. 2009;26(1):7–19.

    CAS  PubMed  Google Scholar 

  117. Behr J, Ryu JH. Pulmonary hypertension in interstitial lung disease. Eur Respir J. 2008;31(6):1357–67.

    Article  CAS  PubMed  Google Scholar 

  118. Handa T, et al. Incidence of pulmonary hypertension and its clinical relevance in patients with sarcoidosis. Chest. 2006;129(5):1246–52.

    Article  PubMed  Google Scholar 

  119. Shorr AF, et al. Pulmonary hypertension in advanced sarcoidosis: epidemiology and clinical characteristics. Eur Respir J. 2005;25(5):783–8.

    Article  CAS  PubMed  Google Scholar 

  120. Launay D, et al. Prevalence and characteristics of moderate to severe pulmonary hypertension in systemic sclerosis with and without interstitial lung disease. J Rheumatol. 2007;34(5):1005–11.

    PubMed  Google Scholar 

  121. Trad S, et al. Pulmonary arterial hypertension is a major mortality factor in diffuse systemic sclerosis, independent of interstitial lung disease. Arthritis Rheum. 2006;54(1):184–91.

    Article  PubMed  Google Scholar 

  122. Chang B, et al. Scleroderma patients with combined pulmonary hypertension and interstitial lung disease. J Rheumatol. 2003;30(11):2398–405.

    PubMed  Google Scholar 

  123. Johnson SR, Granton JT. Pulmonary hypertension in systemic sclerosis and systemic lupus erythematosus. Eur Respir Rev. 2011;20(122):277–86.

    Article  CAS  PubMed  Google Scholar 

  124. Bartsch P, Saltin B. General introduction to altitude adaptation and mountain sickness. Scand J Med Sci Sports. 2008;18 Suppl 1:1–10.

    Article  PubMed  Google Scholar 

  125. Xu XQ, Jing ZC. High-altitude pulmonary hypertension. Eur Respir Rev. 2009;18(111):13–7.

    Article  PubMed  Google Scholar 

  126. Sime F, et al. Pulmonary hypertension in children born and living at high altitudes. Am J Cardiol. 1963;11:143–9.

    Article  CAS  PubMed  Google Scholar 

  127. Aldashev AA, et al. Characterization of high-altitude pulmonary hypertension in the Kyrgyz: association with angiotensin-converting enzyme genotype. Am J Respir Crit Care Med. 2002;166(10):1396–402.

    Article  PubMed  Google Scholar 

  128. Sime F, Penaloza D, Ruiz L. Bradycardia, increased cardiac output, and reversal of pulmonary hypertension in altitude natives living at sea level. Br Heart J. 1971;33(5):647–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Kauppert CA, et al. Pulmonary hypertension in obesity-hypoventilation syndrome. Respir Med. 2013;107(12):2061–70.

    Article  PubMed  Google Scholar 

  130. Kessler R, et al. The obesity-hypoventilation syndrome revisited: a prospective study of 34 consecutive cases. Chest. 2001;120(2):369–76.

    Article  CAS  PubMed  Google Scholar 

  131. Minai OA, et al. Frequency and impact of pulmonary hypertension in patients with obstructive sleep apnea syndrome. Am J Cardiol. 2009;104(9):1300–6.

    Article  PubMed  Google Scholar 

  132. Sajkov D, McEvoy RD. Obstructive sleep apnea and pulmonary hypertension. Prog Cardiovasc Dis. 2009;51(5):363–70.

    Article  PubMed  Google Scholar 

  133. Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res. 2006;99(7):675–91.

    Article  CAS  PubMed  Google Scholar 

  134. Desmouliere A, et al. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol. 1993;122(1):103–11.

    Article  CAS  PubMed  Google Scholar 

  135. Hinz B, et al. Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell. 2001;12(9):2730–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Howell K, Preston RJ, McLoughlin P. Chronic hypoxia causes angiogenesis in addition to remodelling in the adult rat pulmonary circulation. J Physiol. 2003;547(Pt 1):133–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  137. Bonnet S, et al. An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation. 2006;113(22):2630–41.

    Article  CAS  PubMed  Google Scholar 

  138. Marsboom G, et al. Lung (1)(8)F-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;185(6):670–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Archer SL, et al. Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am J Physiol Heart Circ Physiol. 2008;294(2):H570–8.

    Article  CAS  PubMed  Google Scholar 

  140. Hickey MM, et al. The von Hippel-Lindau Chuvash mutation promotes pulmonary hypertension and fibrosis in mice. J Clin Invest. 2010;120(3):827–39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  141. Hu CJ, et al. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol. 2003;23(24):9361–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Azarov I, et al. Nitric oxide scavenging by red blood cells as a function of hematocrit and oxygenation. J Biol Chem. 2005;280(47):39024–32.

    Article  CAS  PubMed  Google Scholar 

  143. Deem S, et al. Red-blood-cell augmentation of hypoxic pulmonary vasoconstriction: hematocrit dependence and the importance of nitric oxide. Am J Respir Crit Care Med. 1998;157(4 Pt 1):1181–6.

    Article  CAS  PubMed  Google Scholar 

  144. MacNee W. Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part two. Am J Respir Crit Care Med. 1994;150(4):1158–68.

    Article  CAS  PubMed  Google Scholar 

  145. Shujaat A, Bajwa AA, Cury JD. Pulmonary hypertension secondary to COPD. Pulm Med. 2012;2012:203952.

    Article  PubMed Central  PubMed  Google Scholar 

  146. Strange C, Highland KB. Pulmonary hypertension in interstitial lung disease. Curr Opin Pulm Med. 2005;11(5):452–5.

    Article  PubMed  Google Scholar 

  147. Cosgrove GP, et al. Pigment epithelium-derived factor in idiopathic pulmonary fibrosis: a role in aberrant angiogenesis. Am J Respir Crit Care Med. 2004;170(3):242–51.

    Article  PubMed  Google Scholar 

  148. Ebina M, et al. Heterogeneous increase in CD34-positive alveolar capillaries in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2004;169(11):1203–8.

    Article  PubMed  Google Scholar 

  149. Farkas L, et al. VEGF ameliorates pulmonary hypertension through inhibition of endothelial apoptosis in experimental lung fibrosis in rats. J Clin Invest. 2009;119(5):1298–311.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  150. He H, et al. Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through flk-1/KDR activation of c-Src. J Biol Chem. 1999;274(35):25130–5.

    Article  CAS  PubMed  Google Scholar 

  151. Wang H, Keiser JA. Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases in vascular smooth muscle cells: role of flt-1. Circ Res. 1998;83(8):832–40.

    Article  CAS  PubMed  Google Scholar 

  152. Voelkel NF, Vandivier RW, Tuder RM. Vascular endothelial growth factor in the lung. Am J Physiol Lung Cell Mol Physiol. 2006;290(2):L209–21.

    Article  CAS  PubMed  Google Scholar 

  153. Xing D, et al. Endothelial cells overexpressing interleukin-8 receptors reduce inflammatory and neointimal responses to arterial injury. Circulation. 2012;125(12):1533–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  154. Fu J, et al. Targeted delivery of pulmonary arterial endothelial cells overexpressing interleukin-8 receptors attenuates monocrotaline-induced pulmonary vascular remodeling. Arterioscler Thromb Vasc Biol. 2014;34(7):1539–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Richards TJ, et al. Peripheral blood proteins predict mortality in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2012;185(1):67–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  156. Yamamoto C, et al. Airway inflammation in COPD assessed by sputum levels of interleukin-8. Chest. 1997;112(2):505–10.

    Article  CAS  PubMed  Google Scholar 

  157. Farkas L, et al. Pulmonary hypertension and idiopathic pulmonary fibrosis: a tale of angiogenesis, apoptosis, and growth factors. Am J Respir Cell Mol Biol. 2011;45(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  158. Kasahara Y, et al. Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. Am J Respir Crit Care Med. 2001;163(3 Pt 1):737–44.

    Article  CAS  PubMed  Google Scholar 

  159. Burke DL, et al. Sustained hypoxia promotes the development of a pulmonary artery-specific chronic inflammatory microenvironment. Am J Physiol Lung Cell Mol Physiol. 2009;297(2):L238–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  160. Frid MG, et al. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am J Pathol. 2006;168(2):659–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Distler JH, et al. Hypoxia-induced increase in the production of extracellular matrix proteins in systemic sclerosis. Arthritis Rheum. 2007;56(12):4203–15.

    Article  CAS  PubMed  Google Scholar 

  162. Eddahibi S, et al. Interleukin-6 gene polymorphism confers susceptibility to pulmonary hypertension in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2006;3(6):475–6.

    Article  PubMed  Google Scholar 

  163. Gourh P, et al. Plasma cytokine profiles in systemic sclerosis: associations with autoantibody subsets and clinical manifestations. Arthritis Res Ther. 2009;11(5):R147.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  164. Humbert M, et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med. 1995;151(5):1628–31.

    Article  CAS  PubMed  Google Scholar 

  165. Nishimaki T, et al. Immunological analysis of pulmonary hypertension in connective tissue diseases. J Rheumatol. 1999;26(11):2357–62.

    CAS  PubMed  Google Scholar 

  166. Savale L, et al. Impact of interleukin-6 on hypoxia-induced pulmonary hypertension and lung inflammation in mice. Respir Res. 2009;10:6.

    Article  PubMed Central  PubMed  Google Scholar 

  167. Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med. 1995;333(4):214–21.

    Article  CAS  PubMed  Google Scholar 

  168. Dinh-Xuan AT, et al. Impairment of endothelium-dependent pulmonary-artery relaxation in chronic obstructive lung disease. N Engl J Med. 1991;324(22):1539–47.

    Article  CAS  PubMed  Google Scholar 

  169. Barbera JA, et al. Reduced expression of endothelial nitric oxide synthase in pulmonary arteries of smokers. Am J Respir Crit Care Med. 2001;164(4):709–13.

    Article  CAS  PubMed  Google Scholar 

  170. Orte C, et al. Expression of pulmonary vascular angiotensin-converting enzyme in primary and secondary plexiform pulmonary hypertension. J Pathol. 2000;192(3):379–84.

    Article  CAS  PubMed  Google Scholar 

  171. Morrell NW, et al. Angiotensin converting enzyme expression is increased in small pulmonary arteries of rats with hypoxia-induced pulmonary hypertension. J Clin Invest. 1995;96(4):1823–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  172. Morrell NW, Morris KG, Stenmark KR. Role of angiotensin-converting enzyme and angiotensin II in development of hypoxic pulmonary hypertension. Am J Physiol. 1995;269(4 Pt 2):H1186–94.

    CAS  PubMed  Google Scholar 

  173. Nong Z, et al. Inhibition of tissue angiotensin-converting enzyme with quinapril reduces hypoxic pulmonary hypertension and pulmonary vascular remodeling. Circulation. 1996;94(8):1941–7.

    Article  CAS  PubMed  Google Scholar 

  174. Al Dabal L, Bahammam AS. Obesity hypoventilation syndrome. Ann Thorac Med. 2009;4(2):41–9.

    Article  PubMed Central  PubMed  Google Scholar 

  175. Campo A, et al. Hyperleptinaemia, respiratory drive and hypercapnic response in obese patients. Eur Respir J. 2007;30(2):223–31.

    Article  CAS  PubMed  Google Scholar 

  176. Yee BJ, et al. Treatment of obesity hypoventilation syndrome and serum leptin. Respiration. 2006;73(2):209–12.

    CAS  PubMed  Google Scholar 

  177. Raghu G, Brown KK. Interstitial lung disease: clinical evaluation and keys to an accurate diagnosis. Clin Chest Med. 2004;25(3):409–19. v.

    Article  PubMed  Google Scholar 

  178. Matthay RA. Effects of theophylline on cardiovascular performance in chronic obstructive pulmonary disease. Chest. 1985;88(2 Suppl):112S–7.

    Article  CAS  PubMed  Google Scholar 

  179. Long term domiciliary oxygen therapy in chronic hypoxic cor pulmonale complicating chronic bronchitis and emphysema. Report of the Medical Research Council Working Party. Lancet. 1981;1(8222):681–6.

    Google Scholar 

  180. Continuous or nocturnal oxygen therapy in hypoxemic chronic obstructive lung disease: a clinical trial. Nocturnal Oxygen Therapy Trial Group. Ann Intern Med. 1980;93(3):391–8.

    Google Scholar 

  181. Weitzenblum E, et al. Long-term oxygen therapy can reverse the progression of pulmonary hypertension in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 1985;131(4):493–8.

    CAS  PubMed  Google Scholar 

  182. Weg IL, et al. Development of pulmonary hypertension after lung volume reduction surgery. Am J Respir Crit Care Med. 1999;159(2):552–6.

    Article  CAS  PubMed  Google Scholar 

  183. Sciurba FC, et al. Improvement in pulmonary function and elastic recoil after lung-reduction surgery for diffuse emphysema. N Engl J Med. 1996;334(17):1095–9.

    Article  CAS  PubMed  Google Scholar 

  184. Richeldi L, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2071–82.

    Article  PubMed  CAS  Google Scholar 

  185. Rodman DM, Lindenfeld J. Successful treatment of sarcoidosis-associated pulmonary hypertension with corticosteroids. Chest. 1990;97(2):500–2.

    Article  CAS  PubMed  Google Scholar 

  186. Rafii R, et al. A review of current and novel therapies for idiopathic pulmonary fibrosis. J Thorac Dis. 2013;5(1):48–73.

    Google Scholar 

  187. Wells AU, Kokosi M, Karagiannis K. Treatment strategies for idiopathic interstitial pneumonias. Curr Opin Pulm Med. 2014;20(5):442–8.

    Google Scholar 

  188. Demedts M, et al. High-dose acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med. 2005;353(21):2229–42.

    Article  CAS  PubMed  Google Scholar 

  189. Idiopathic Pulmonary Fibrosis Clinical Research N, et al. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N Engl J Med. 2012;366(21):1968–77.

    Google Scholar 

  190. Idiopathic Pulmonary Fibrosis Clinical Research N, et al. Randomized trial of acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2093–101.

    Google Scholar 

  191. Antezana AM, et al. Pulmonary hypertension in high-altitude chronic hypoxia: response to nifedipine. Eur Respir J. 1998;12(5):1181–5.

    Article  CAS  PubMed  Google Scholar 

  192. Aldashev AA, et al. Phosphodiesterase type 5 and high altitude pulmonary hypertension. Thorax. 2005;60(8):683–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  193. Rivera-Ch M, Leon-Velarde F, Huicho L. Treatment of chronic mountain sickness: critical reappraisal of an old problem. Respir Physiol Neurobiol. 2007;158(2–3):251–65.

    Article  PubMed  Google Scholar 

  194. Aaron SD, et al. Effect of weight reduction on respiratory function and airway reactivity in obese women. Chest. 2004;125(6):2046–52.

    Article  PubMed  Google Scholar 

  195. Sutton Jr FD, et al. Progesterone for outpatient treatment of Pickwickian syndrome. Ann Intern Med. 1975;83(4):476–9.

    Article  PubMed  Google Scholar 

  196. Raurich JM, et al. Hypercapnic respiratory failure in obesity-hypoventilation syndrome: CO(2) response and acetazolamide treatment effects. Respir Care. 2010;55(11):1442–8.

    PubMed  Google Scholar 

  197. Gottlieb J. Lung transplantation for interstitial lung diseases. Curr Opin Pulm Med. 2014;20(5):457–462

    Google Scholar 

  198. Yusen RD, et al. The Registry of the International Society for Heart and Lung Transplantation: Thirtieth Adult Lung and Heart-Lung Transplant Report – 2013; focus theme: age. J Heart Lung Transplant. 2013;32(10):965–78.

    Article  PubMed  Google Scholar 

  199. Kotloff RM, Thabut G. Lung transplantation. Am J Respir Crit Care Med. 2011;184(2):159–71.

    Article  PubMed  Google Scholar 

  200. Fitton TP, et al. Impact of secondary pulmonary hypertension on lung transplant outcome. J Heart Lung Transplant. 2005;24(9):1254–9.

    Article  PubMed  Google Scholar 

  201. Selimovic N, Andersson B, Bech-Hanssen O, Lomsky M, Riise GC, Rundqvist B. Right ventricular ejection fraction during exercise as a predictor of mortality in patients awaiting lung transplantation: A cohort study. BMJ open. 2013;3(4): Epub. e002108. doi:10.1136/bmjopen-2012-002108.

    Google Scholar 

  202. Kawut SM, et al. Exercise testing determines survival in patients with diffuse parenchymal lung disease evaluated for lung transplantation. Respir Med. 2005;99(11):1431–9.

    Article  PubMed  Google Scholar 

  203. Huerd SS, et al. Secondary pulmonary hypertension does not adversely affect outcome after single lung transplantation. J Thorac Cardiovasc Surg. 2000;119(3):458–65.

    Article  CAS  PubMed  Google Scholar 

  204. Ghofrani HA, et al. Sildenafil for treatment of lung fibrosis and pulmonary hypertension: a randomised controlled trial. Lancet. 2002;360(9337):895–900.

    Article  CAS  PubMed  Google Scholar 

  205. Madden BP, et al. A potential role for sildenafil in the management of pulmonary hypertension in patients with parenchymal lung disease. Vascul Pharmacol. 2006;44(5):372–6.

    Article  CAS  PubMed  Google Scholar 

  206. Collard HR, et al. Sildenafil improves walk distance in idiopathic pulmonary fibrosis. Chest. 2007;131(3):897–9.

    Article  PubMed Central  PubMed  Google Scholar 

  207. Corte TJ, et al. The use of sildenafil to treat pulmonary hypertension associated with interstitial lung disease. Respirology. 2010;15(8):1226–32.

    Article  PubMed  Google Scholar 

  208. Idiopathic Pulmonary Fibrosis Clinical Research N, et al. A controlled trial of sildenafil in advanced idiopathic pulmonary fibrosis. N Engl J Med. 2010;363(7):620–8.

    Google Scholar 

  209. Rao RS, et al. Sildenafil improves six-minute walk distance in chronic obstructive pulmonary disease: a randomised, double-blind, placebo-controlled trial. Indian J Chest Dis Allied Sci. 2011;53(2):81–5.

    PubMed  Google Scholar 

  210. Blanco I, et al. Hemodynamic and gas exchange effects of sildenafil in patients with chronic obstructive pulmonary disease and pulmonary hypertension. Am J Respir Crit Care Med. 2010;181(3):270–8.

    Article  CAS  PubMed  Google Scholar 

  211. Zimmermann GS, et al. Haemodynamic changes in pulmonary hypertension in patients with interstitial lung disease treated with PDE-5 inhibitors. Respirology. 2014;19(5):700–6.

    Article  PubMed  Google Scholar 

  212. Sharif-Kashani B, et al. The effect of amlodipine and sildenafil on the NT-ProBNP level of patients with COPD-induced pulmonary hypertension. Iran J Pharm Res. 2014;13(Suppl):161–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  213. Goudie AR, et al. Tadalafil in patients with chronic obstructive pulmonary disease: a randomised, double-blind, parallel-group, placebo-controlled trial. Lancet Respir Med. 2014;2(4):293–300.

    Article  CAS  PubMed  Google Scholar 

  214. Seibold JR, et al. Randomized, prospective, placebo-controlled trial of bosentan in interstitial lung disease secondary to systemic sclerosis. Arthritis Rheum. 2010;62(7):2101–8.

    CAS  PubMed  Google Scholar 

  215. Stolz D, et al. A randomised, controlled trial of bosentan in severe COPD. Eur Respir J. 2008;32(3):619–28.

    Article  CAS  PubMed  Google Scholar 

  216. King Jr TE, et al. BUILD-3: a randomized, controlled trial of bosentan in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;184(1):92–9.

    Article  PubMed  Google Scholar 

  217. Raghu G, et al. Macitentan for the treatment of idiopathic pulmonary fibrosis: the randomised controlled MUSIC trial. Eur Respir J. 2013;42(6):1622–32.

    Article  CAS  PubMed  Google Scholar 

  218. Raghu G, et al. Treatment of idiopathic pulmonary fibrosis with ambrisentan: a parallel, randomized trial. Ann Intern Med. 2013;158(9):641–9.

    Article  PubMed  Google Scholar 

  219. Corte TJ, et al. Bosentan in pulmonary hypertension associated with fibrotic idiopathic interstitial pneumonia. Am J Respir Crit Care Med. 2014;190(2):208–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  220. Olschewski H, et al. Inhaled prostacyclin and iloprost in severe pulmonary hypertension secondary to lung fibrosis. Am J Respir Crit Care Med. 1999;160(2):600–7.

    Article  CAS  PubMed  Google Scholar 

  221. Boeck L, et al. Acute effects of aerosolized iloprost in COPD related pulmonary hypertension – a randomized controlled crossover trial. PLoS One. 2012;7(12), e52248.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  222. Saggar R, et al. Changes in right heart haemodynamics and echocardiographic function in an advanced phenotype of pulmonary hypertension and right heart dysfunction associated with pulmonary fibrosis. Thorax. 2014;69(2):123–9.

    Article  PubMed  Google Scholar 

  223. Barbera JA, Peinado VI, Santos S. Pulmonary hypertension in chronic obstructive pulmonary disease. Eur Respir J. 2003;21(5):892–905.

    Article  CAS  PubMed  Google Scholar 

  224. Weissmann N, et al. Stimulation of soluble guanylate cyclase prevents cigarette smoke-induced pulmonary hypertension and emphysema. Am J Respir Crit Care Med. 2014;189(11):1359–73.

    Article  CAS  PubMed  Google Scholar 

  225. Hoeper MM, et al. Riociguat for interstitial lung disease and pulmonary hypertension: a pilot trial. Eur Respir J. 2013;41(4):853–60.

    Article  PubMed  Google Scholar 

  226. Royal Brompton and Harefield NHS Foundation Trust; Actelion. Bosentan in pulmonary hypertension in interstitial lung disease treatment study (B-PHIT). In: Clinicaltrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US) 2008. Available from: http://clinicaltrials.gov/ct2/show/NCT00637065. NLM identifier: NCT00637065.

  227. Maron BA, et al. Study design and rationale for investigating phosphodiesterase type 5 inhibition for the treatment of pulmonary hypertension due to chronic obstructive lung disease: the TADA-PHiLD (TADAlafil for Pulmonary Hypertension associated with chronic obstructive Lung Disease) trial. Pulm Circ. 2013;3(4):889–97.

    Article  PubMed Central  PubMed  Google Scholar 

  228. Kojonazarov B, et al. Effects of fasudil in patients with high-altitude pulmonary hypertension. Eur Respir J. 2012;39(2):496–8.

    Article  CAS  PubMed  Google Scholar 

  229. Kojonazarov B, et al. Bosentan reduces pulmonary artery pressure in high altitude residents. High Alt Med Biol. 2012;13(3):217–23.

    Article  CAS  PubMed  Google Scholar 

  230. Hotta J, et al. Polymorphisms of renin-angiotensin system genes with high-altitude pulmonary edema in Japanese subjects. Chest. 2004;126(3):825–30.

    Article  CAS  PubMed  Google Scholar 

  231. Gan Y, Herzog EL, Gomer RH. Pirfenidone treatment of idiopathic pulmonary fibrosis. Ther Clin Risk Manage. 2011;7:39–47.

    CAS  Google Scholar 

  232. Noble PW, et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet. 2011;377(9779):1760–9.

    Article  CAS  PubMed  Google Scholar 

  233. King Jr TE, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2083–92.

    Article  PubMed  CAS  Google Scholar 

  234. Richeldi L, et al. Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N Engl J Med. 2011;365(12):1079–87.

    Article  CAS  PubMed  Google Scholar 

  235. Bartosik W, Egan JJ, Wood AE. The Novalung interventional lung assist as bridge to lung transplantation for self-ventilating patients – initial experience. Interact Cardiovasc Thorac Surg. 2011;13(2):198–200.

    Article  PubMed  Google Scholar 

  236. Fischer S, et al. Bridge to lung transplantation with the extracorporeal membrane ventilator Novalung in the veno-venous mode: the initial Hannover experience. ASAIO J. 2007;53(2):168–70.

    Article  PubMed  Google Scholar 

  237. Hayes Jr D, et al. Ambulatory venovenous extracorporeal respiratory support as a bridge for cystic fibrosis patients to emergent lung transplantation. J Cyst Fibros. 2012;11(1):40–5.

    Article  PubMed  Google Scholar 

  238. Jimenez SA, Derk CT. Following the molecular pathways toward an understanding of the pathogenesis of systemic sclerosis. Ann Intern Med. 2004;140(1):37–50.

    Article  CAS  PubMed  Google Scholar 

  239. Hassoun PM. Lung involvement in systemic sclerosis. Presse Med. 2011;40(1 Pt 2):e3–17.

    PubMed Central  PubMed  Google Scholar 

  240. Gabrielli A, Avvedimento EV, Krieg T. Scleroderma. N Engl J Med. 2009;360(19):1989–2003.

    Article  CAS  PubMed  Google Scholar 

  241. Steen VD, Powell DL, Medsger Jr TA. Clinical correlations and prognosis based on serum autoantibodies in patients with systemic sclerosis. Arthritis Rheum. 1988;31(2):196–203.

    Article  CAS  PubMed  Google Scholar 

  242. Valesini G, et al. Geographical clustering of scleroderma in a rural area in the province of Rome. Clin Exp Rheumatol. 1993;11(1):41–7.

    CAS  PubMed  Google Scholar 

  243. Shinkai H. Epidemiology of progressive systemic sclerosis in Japan. In: Black CM, Myers AR, editors. Progressive systemic sclerosis (current topics in rheumatology). New York: Gower; 1985. p. 79–81.

    Google Scholar 

  244. Mayes MD, et al. Prevalence, incidence, survival, and disease characteristics of systemic sclerosis in a large US population. Arthritis Rheum. 2003;48(8):2246–55.

    Article  PubMed  Google Scholar 

  245. Steen VD, Medsger TA. Changes in causes of death in systemic sclerosis, 1972–2002. Ann Rheum Dis. 2007;66(7):940–4.

    Article  PubMed Central  PubMed  Google Scholar 

  246. D’Angelo WA, et al. Pathologic observations in systemic sclerosis (scleroderma). A study of fifty-eight autopsy cases and fifty-eight matched controls. Am J Med. 1969;46(3):428–40.

    Article  PubMed  Google Scholar 

  247. Wells AU, et al. Serial CT in fibrosing alveolitis: prognostic significance of the initial pattern. AJR Am J Roentgenol. 1993;161(6):1159–65.

    Article  CAS  PubMed  Google Scholar 

  248. Varga J. Systemic sclerosis: an update. Bull NYU Hosp Jt Dis. 2008;66(3):198–202.

    PubMed  Google Scholar 

  249. Murata I, et al. Echocardiographic evaluation of pulmonary arterial hypertension in patients with progressive systemic sclerosis and related syndromes. Jpn Circ J. 1992;56(10):983–91.

    Article  CAS  PubMed  Google Scholar 

  250. Battle RW, et al. Prevalence of pulmonary hypertension in limited and diffuse scleroderma. Chest. 1996;110(6):1515–9.

    Article  CAS  PubMed  Google Scholar 

  251. Wells AU, et al. Fibrosing alveolitis in systemic sclerosis. Bronchoalveolar lavage findings in relation to computed tomographic appearance. Am J Respir Crit Care Med. 1994;150(2):462–8.

    Article  CAS  PubMed  Google Scholar 

  252. Harrison NK, et al. Pulmonary involvement in systemic sclerosis: the detection of early changes by thin section CT scan, bronchoalveolar lavage and 99mTc-DTPA clearance. Respir Med. 1989;83(5):403–14.

    Article  CAS  PubMed  Google Scholar 

  253. Fischer A, et al. Clinically significant interstitial lung disease in limited scleroderma: histopathology, clinical features, and survival. Chest. 2008;134(3):601–5.

    Article  PubMed  Google Scholar 

  254. White B, et al. Cyclophosphamide is associated with pulmonary function and survival benefit in patients with scleroderma and alveolitis. Ann Intern Med. 2000;132(12):947–54.

    Article  CAS  PubMed  Google Scholar 

  255. Akesson A, et al. Improved pulmonary function in systemic sclerosis after treatment with cyclophosphamide. Arthritis Rheum. 1994;37(5):729–35.

    Article  CAS  PubMed  Google Scholar 

  256. Airo P, et al. Intravenous cyclophosphamide therapy for systemic sclerosis. A single-center experience and review of the literature with pooled analysis of lung function test results. Clin Exp Rheumatol. 2004;22(5):573–8.

    CAS  PubMed  Google Scholar 

  257. Tashkin DP, et al. Cyclophosphamide versus placebo in scleroderma lung disease. N Engl J Med. 2006;354(25):2655–66.

    Article  CAS  PubMed  Google Scholar 

  258. Pakas I, et al. Cyclophosphamide with low or high dose prednisolone for systemic sclerosis lung disease. J Rheumatol. 2002;29(2):298–304.

    CAS  PubMed  Google Scholar 

  259. Griffiths B, et al. Systemic sclerosis and interstitial lung disease: a pilot study using pulse intravenous methylprednisolone and cyclophosphamide to assess the effect on high resolution computed tomography scan and lung function. J Rheumatol. 2002;29(11):2371–8.

    CAS  PubMed  Google Scholar 

  260. Silver RM, et al. Cyclophosphamide and low-dose prednisone therapy in patients with systemic sclerosis (scleroderma) with interstitial lung disease. J Rheumatol. 1993;20(5):838–44.

    CAS  PubMed  Google Scholar 

  261. Swigris JJ, et al. Mycophenolate mofetil is safe, well tolerated, and preserves lung function in patients with connective tissue disease-related interstitial lung disease. Chest. 2006;130(1):30–6.

    Article  CAS  PubMed  Google Scholar 

  262. Berezne A, et al. Therapeutic strategy combining intravenous cyclophosphamide followed by oral azathioprine to treat worsening interstitial lung disease associated with systemic sclerosis: a retrospective multicenter open-label study. J Rheumatol. 2008;35(6):1064–72.

    CAS  PubMed  Google Scholar 

  263. Paone C, et al. Twelve-month azathioprine as maintenance therapy in early diffuse systemic sclerosis patients treated for 1-year with low dose cyclophosphamide pulse therapy. Clin Exp Rheumatol. 2007;25(4):613–6.

    CAS  PubMed  Google Scholar 

  264. Cappelli S, et al. Immunosuppression for interstitial lung disease in systemic sclerosis. Eur Respir Rev. 2013;22(129):236–43.

    Article  PubMed  Google Scholar 

  265. Harari S, Torre O, Moss J. Lymphangioleiomyomatosis: what do we know and what are we looking for? Eur Respir Rev. 2011;20(119):34–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  266. Ryu JH, et al. Chylothorax in lymphangioleiomyomatosis. Chest. 2003;123(2):623–7.

    Article  PubMed  Google Scholar 

  267. Eliasson AH, Phillips YY, Tenholder MF. Treatment of lymphangioleiomyomatosis. A meta-analysis. Chest. 1989;96(6):1352–5.

    Article  CAS  PubMed  Google Scholar 

  268. Taveira-DaSilva AM, et al. Decline in lung function in patients with lymphangioleiomyomatosis treated with or without progesterone. Chest. 2004;126(6):1867–74.

    Article  CAS  PubMed  Google Scholar 

  269. McCormack FX, et al. Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med. 2011;364(17):1595–606.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  270. Pechet TT, et al. Lung transplantation for lymphangioleiomyomatosis. J Heart Lung Transplant. 2004;23(3):301–8.

    Article  PubMed  Google Scholar 

  271. Taveira-DaSilva AM, et al. Pulmonary artery pressure in lymphangioleiomyomatosis: an echocardiographic study. Chest. 2007;132(5):1573–8.

    Article  PubMed Central  PubMed  Google Scholar 

  272. Reynaud-Gaubert M, et al. Lung transplantation for lymphangioleiomyomatosis: the French experience. Transplantation. 2008;86(4):515–20.

    Article  PubMed  Google Scholar 

  273. Cottin V, et al. Pulmonary hypertension in lymphangioleiomyomatosis: characteristics in 20 patients. Eur Respir J. 2012;40(3):630–40.

    Article  PubMed  Google Scholar 

  274. Favara BE, et al. Contemporary classification of histiocytic disorders. The WHO Committee On Histiocytic/Reticulum Cell Proliferations. Reclassification Working Group of the Histiocyte Society. Med Pediatr Oncol. 1997;29(3):157–66.

    Article  CAS  PubMed  Google Scholar 

  275. Nezelof C, Basset F, Rousseau MF. Histiocytosis X histogenetic arguments for a Langerhans cell origin. Biomedicine. 1973;18(5):365–71.

    CAS  PubMed  Google Scholar 

  276. Vermaelen K, Pauwels R. Pulmonary dendritic cells. Am J Respir Crit Care Med. 2005;172(5):530–51.

    Article  PubMed  Google Scholar 

  277. Suri HS, et al. Pulmonary langerhans cell histiocytosis. Orphanet J Rare Dis. 2012;7:16.

    Article  PubMed Central  PubMed  Google Scholar 

  278. Vassallo R, et al. Clinical outcomes of pulmonary Langerhans’-cell histiocytosis in adults. N Engl J Med. 2002;346(7):484–90.

    Article  PubMed  Google Scholar 

  279. Tazi A. Adult pulmonary Langerhans’ cell histiocytosis. Eur Respir J. 2006;27(6):1272–85.

    Article  CAS  PubMed  Google Scholar 

  280. Watanabe R, et al. Clinico-epidemiological features of pulmonary histiocytosis X. Intern Med. 2001;40(10):998–1003.

    Article  CAS  PubMed  Google Scholar 

  281. Howarth DM, et al. Langerhans cell histiocytosis: diagnosis, natural history, management, and outcome. Cancer. 1999;85(10):2278–90.

    Article  CAS  PubMed  Google Scholar 

  282. Sundar KM, et al. Pulmonary Langerhans cell histiocytosis: emerging concepts in pathobiology, radiology, and clinical evolution of disease. Chest. 2003;123(5):1673–83.

    Article  PubMed  Google Scholar 

  283. Epler GR, et al. Normal chest roentgenograms in chronic diffuse infiltrative lung disease. N Engl J Med. 1978;298(17):934–9.

    Article  CAS  PubMed  Google Scholar 

  284. Brauner MW, et al. Pulmonary Langerhans cell histiocytosis: evolution of lesions on CT scans. Radiology. 1997;204(2):497–502.

    Article  CAS  PubMed  Google Scholar 

  285. Crausman RS, et al. Pulmonary histiocytosis X: pulmonary function and exercise pathophysiology. Am J Respir Crit Care Med. 1996;153(1):426–35.

    Article  CAS  PubMed  Google Scholar 

  286. Travis WD, et al. Pulmonary Langerhans cell granulomatosis (histiocytosis X). A clinicopathologic study of 48 cases. Am J Surg Pathol. 1993;17(10):971–86.

    Article  CAS  PubMed  Google Scholar 

  287. Dauriat G, et al. Lung transplantation for pulmonary langerhans’ cell histiocytosis: a multicenter analysis. Transplantation. 2006;81(5):746–50.

    Article  PubMed  Google Scholar 

  288. Colby TV, Lombard C. Histiocytosis X in the lung. Hum Pathol. 1983;14(10):847–56.

    Article  CAS  PubMed  Google Scholar 

  289. Mogulkoc N, et al. Pulmonary Langerhans’ cell histiocytosis: radiologic resolution following smoking cessation. Chest. 1999;115(5):1452–5.

    Article  CAS  PubMed  Google Scholar 

  290. Chaowalit N, et al. Echocardiographic and clinical characteristics of pulmonary hypertension complicating pulmonary Langerhans cell histiocytosis. Mayo Clin Proc. 2004;79(10):1269–75.

    Article  PubMed  Google Scholar 

  291. Fartoukh M, et al. Severe pulmonary hypertension in histiocytosis X. Am J Respir Crit Care Med. 2000;161(1):216–23.

    Article  CAS  PubMed  Google Scholar 

  292. Le Pavec J, et al. Pulmonary Langerhans cell histiocytosis-associated pulmonary hypertension: clinical characteristics and impact of pulmonary arterial hypertension therapies. Chest. 2012;142(5):1150–7.

    Article  PubMed  Google Scholar 

  293. Baughman RP, Culver DA, Judson MA. A concise review of pulmonary sarcoidosis. Am J Respir Crit Care Med. 2011;183(5):573–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  294. Hunninghake GW, et al. ATS/ERS/WASOG statement on sarcoidosis. American Thoracic Society/European Respiratory Society/World Association of Sarcoidosis and other Granulomatous Disorders. Sarcoidosis Vasc Diffuse Lung Dis. 1999;16(2):149–73.

    CAS  PubMed  Google Scholar 

  295. Schurmann M, et al. Results from a genome-wide search for predisposing genes in sarcoidosis. Am J Respir Crit Care Med. 2001;164(5):840–6.

    Article  CAS  PubMed  Google Scholar 

  296. Thomas KW, Hunninghake GW. Sarcoidosis. JAMA. 2003;289(24):3300–3.

    Article  PubMed  Google Scholar 

  297. Baughman RP, et al. Clinical characteristics of patients in a case control study of sarcoidosis. Am J Respir Crit Care Med. 2001;164(10 Pt 1):1885–9.

    Article  CAS  PubMed  Google Scholar 

  298. Keir G, Wells AU. Assessing pulmonary disease and response to therapy: which test? Semin Respir Crit Care Med. 2010;31(4):409–18.

    Article  PubMed  Google Scholar 

  299. Handa T, et al. Clinical and radiographic indices associated with airflow limitation in patients with sarcoidosis. Chest. 2006;130(6):1851–6.

    Article  PubMed  Google Scholar 

  300. Scadding JG. Prognosis of intrathoracic sarcoidosis in England. A review of 136 cases after five years’ observation. Br Med J. 1961;2(5261):1165–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  301. Paramothayan NS, Lasserson TJ, Jones PW. Corticosteroids for pulmonary sarcoidosis. Cochrane Database Syst Rev. 2005;2, CD001114.

    PubMed  Google Scholar 

  302. Baughman RP, et al. Infliximab therapy in patients with chronic sarcoidosis and pulmonary involvement. Am J Respir Crit Care Med. 2006;174(7):795–802.

    Article  CAS  PubMed  Google Scholar 

  303. Baughman RP, Lower EE, Drent M. Inhibitors of tumor necrosis factor (TNF) in sarcoidosis: who, what, and how to use them. Sarcoidosis Vasc Diffuse Lung Dis. 2008;25(2):76–89.

    CAS  PubMed  Google Scholar 

  304. Gibson GJ, et al. British Thoracic Society Sarcoidosis study: effects of long term corticosteroid treatment. Thorax. 1996;51(3):238–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  305. Diaz-Guzman E, et al. Pulmonary hypertension caused by sarcoidosis. Clin Chest Med. 2008;29(3):549–63. x.

    Article  PubMed Central  PubMed  Google Scholar 

  306. Mayock RL, et al. Manifestations of sarcoidosis. Analysis of 145 patients, with a review of nine series selected from the literature. Am J Med. 1963;35:67–89.

    Article  CAS  PubMed  Google Scholar 

  307. Milman N, et al. Pulmonary hypertension in end-stage pulmonary sarcoidosis: therapeutic effect of sildenafil? J Heart Lung Transplant. 2008;27(3):329–34.

    Article  PubMed  Google Scholar 

  308. Rosen Y, et al. Granulomatous pulmonary angiitis in sarcoidosis. Arch Pathol Lab Med. 1977;101(4):170–4.

    CAS  PubMed  Google Scholar 

  309. Takemura T, et al. Pulmonary vascular involvement in sarcoidosis: granulomatous angiitis and microangiopathy in transbronchial lung biopsies. Virchows Arch A Pathol Anat Histopathol. 1991;418(4):361–8.

    Article  CAS  PubMed  Google Scholar 

  310. Cordova FC, D’Alonzo G. Sarcoidosis-associated pulmonary hypertension. Curr Opin Pulm Med. 2013;19(5):531–7.

    Article  CAS  PubMed  Google Scholar 

  311. Baughman RP, et al. Bosentan for sarcoidosis-associated pulmonary hypertension: a double-blind placebo controlled randomized trial. Chest. 2014;145(4):810–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Ryan MD, FAHA, FACC .

Editor information

Editors and Affiliations

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huston, J., Hatton, N.D., Ryan, J.J. (2016). Pulmonary Hypertension in Patients Without Pulmonary Arterial Hypertension. In: Maron, B., Zamanian, R., Waxman, A. (eds) Pulmonary Hypertension. Springer, Cham. https://doi.org/10.1007/978-3-319-23594-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23594-3_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23593-6

  • Online ISBN: 978-3-319-23594-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics