Skip to main content

Computational Issues for Optimal Shape Design in Hemodynamics

  • Chapter
  • First Online:
Mathematical Modeling and Optimization of Complex Structures

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 40))

  • 1558 Accesses

Abstract

A Fluid-Structure Interaction model is studied for aortic flow, based on Koiter’s shell model for the structure, Navier–Stokes equations for the fluid and transpiration for the coupling. It accounts for wall deformation while yet working on a fixed geometry. The model is established first. Then a numerical approximation is proposed and some tests are given. The model is also used for optimal design of a stent and possible recovery of the arterial wall elastic coefficients by inverse methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Bertoglio, D. Barber, N. Gaddum, I. Valverde, M. Rutten, P. Beerbaum, P. Moireau, R. Hose, J.-F. Gerbeau, Identification of artery wall stiffness: in vitro validation and in vivo results of a data assimilation procedure applied to a 3D fluid-structure interaction model. J. Biomech. 47(5), 1027–1034 (2014)

    Article  Google Scholar 

  2. M. Bukač, S. Čanić, R. Glowinski, J. Tambača, A. Quaini, Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement. J. Comput. Phys. 235, 515–541 (2013)

    Article  MathSciNet  Google Scholar 

  3. T. Chacon Rebollo, V. Girault, F. Murat, O. Pironneau, Analysis of a simplified coupled fluid-structure model for computational hemodynamics. SIAM J. Numer. Anal. Submitted

    Google Scholar 

  4. M. Costabel, M. Dauge, Singularities of electromagnetic fields in polyhedral domains. Preprint 97-19, Université de Rennes 1, 1997. http://www.maths.univ-rennes1.fr/~dauge/

  5. A. Decoene, B. Maury, Moving meshes with freefem++. J. Numer. Math. 20(3–4), 195–214 (2012)

    MathSciNet  MATH  Google Scholar 

  6. L. Formaggia, A. Quarteroni, A. Veneziani (eds.), Cardiovasuclar Mathematics: Modeling and Simulation of the Circulatory System (Springer, Milano, 2009)

    Google Scholar 

  7. F. Hecht, New development in freefem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  8. F. Nobile, C. Vergara, An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J. Sci. Comput. 30(2), 731–763 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Tambaca, S. Canic, M. Kosor, R.D. Fish, D. Paniagua, Mechanical behavior of fully expanded commercially available endovascular coronary stents. Texas Heart Inst. J. 38(5), 491–501 (2011)

    Google Scholar 

  10. M. Thiriet, Control of Cell Fate in the Circulatory and Ventilatory Systems. Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems, vol. 2 (Springer, New York, 2012)

    Google Scholar 

  11. F. Usabiaga, J. Bell, R. Delgado-Buscalioni, A. Donev, T. Fai, B. Griffith, C. Peskin, Staggered schemes for fluctuating hydrodynamics. Multiscale Model. Simul. 10(4), 1369–1408 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Special thanks to Frédéric Hecht for his help with freefem++ and Marc Thiriet and Sunčica Čanić for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Pironneau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pironneau, O. (2016). Computational Issues for Optimal Shape Design in Hemodynamics. In: Neittaanmäki, P., Repin, S., Tuovinen, T. (eds) Mathematical Modeling and Optimization of Complex Structures. Computational Methods in Applied Sciences, vol 40. Springer, Cham. https://doi.org/10.1007/978-3-319-23564-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23564-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23563-9

  • Online ISBN: 978-3-319-23564-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics