Skip to main content

Water of the Pamir – Potential and Constraints

  • Chapter
  • First Online:
Mapping Transition in the Pamirs

Part of the book series: Advances in Asian Human-Environmental Research ((AAHER))

Abstract

High mountains in arid regions are known to act as water towers which generate runoff and redistribute it over time and space. Snow and glaciers play important roles as water storages but currently undergo changes in a warming climate. A recession of glacier area was observed in the Pamir during the last four decades of the twentieth century, while recent results indicate slight mass gains during the first decade of the twenty-first century. Fedchenko Glacier, the largest valley glacier in the Pamir, shows a continuous but small volume reduction over the past eight decades. After a period of peak flow will be passed in the near future, a further glacier wastage will reduce annual discharge and change seasonal water availability towards higher streamflow in spring and a runoff reduction in summer. These changes will cause water shortages during the main growing season and cause negative effects for agriculture which highly depends on irrigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agaltseva N, Spectorman T, White C, Tanton T (2005) Modelling the future climate of the Amu Darya Basin. In: Olsson O, Bauer M (eds) Interstate water resource risk management: towards a sustainable future for the Aral Basin. IWA Publishing, London, pp 9–36

    Google Scholar 

  • Arendt A, Bolch T, Cogley JG, Gardner A, Hagen J-O, Hock R, Kase G, Pfeffer WT, Moholdt G, Paul F, Radić V, Andreassen L, Bajracharya S, Beedle M, Berthier E, Bhambri R, Bliss A, Brown I, Burgess E, Burgess D, Cawkwell F, Chinn T, Copland L, Davies B, De Angelis H, Dolgova E, Filbert K, Forester R, Fountain A, Frey H, Giffen B, Glasser N, Gurney S, Hagg W, Hal D, Haritashy UK, Hartmann G, Helm C, Herreid S, Howat I, Kapustin G, Khromova T, Kienholz C, Koenig M, Kohler J, Kriegel D, Kutuzov S, Lavrentiev I, Le Bris R, Lund J, Manley W, Mayer C, Miles E, Li X, Menounos B, Mercer A, Moelg N, Mool P, Nosenko G, Negrete A, Nuth C, Pettersson R, Racoviteanu A, Ranzi R, Rastner P, Rau F, Rich J, Rott H, Schneider C, Seliverstov Y, Sharp M, Sigurðsson O, Stokes C, Wheate R, Winsvold S, Wolken G, Wyatt F, Zheltyhina N (2012) Randolph glacier inventory: a dataset of global glacier outlines global land ice measurements from space. USA Digital Media, Boulder

    Google Scholar 

  • Barandun M et al (2013) Re-establishing seasonal mass balance observation at Abramov Glacier, Kyrgyzstan, from 1968–2012. In: Geophysical research abstracts. EGU General Assembly, Vienna, 7–12 April 2013

    Google Scholar 

  • Finaev A (2009) Review of hydrometeorological observations in Tajikistan for the period of 1990–2005. In: Braun L, Hagg W, Severskiy I, Young G (eds) Assessment of snow, glacier and water resources in Asia. Selected papers from the Workshop in Almaty, November 2006. IHP/HWRP, Koblenz, p 55

    Google Scholar 

  • Finsterwalder R (1932) Wissenschaftliche Ergebnisse der Alai-Pamir Expedition, 1928. Geodätischer und glaziologischer Teil. Reimer-Vohsen, Berlin

    Google Scholar 

  • Gardelle J, Berthier E, Arnaud Y, Kääb A (2013) Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 7:1263–1286

    Article  Google Scholar 

  • Hagg W et al (2013) Glacier and runoff changes in the Rukhk catchment, upper Amu-Darya basin until 2050. Glob Planet Chang 110:62–73

    Article  Google Scholar 

  • Hoelzle M, Hagg W, Wagner S (2010) Future glaciation and river flow in the Vakhsh and Panj drainage basins, Central Asia. In: Geophysical research abstracts, EGU General Assembly, Vienna, 2–7 May 2010

    Google Scholar 

  • Kaser G, Großhauser M, Marzeion B (2010) Contribution potential of glaciers to water availability in different climate regimes. Proc Natl Acad Sci U S A 107:20223–20227

    Article  Google Scholar 

  • Kemmerikh AO (1972) The role of glaciers in runoff of Central Asian rivers. Mat Glyats Issled 20:82–94

    Google Scholar 

  • Khromova TE, Osipova GB, Tsvetkov DG, Dyurgerov MB, Barry RG (2006) Changes in glacier extent in the eastern Pamir, Central Asia, determined from historical data and ASTER imagery. Remote Sens Environ 102:24–32

    Article  Google Scholar 

  • Khromova T et al (2014) Glacier area changes in Northern Eurasia. Environ Res Lett 9:015003

    Article  Google Scholar 

  • Konovalov VG (1985) Tayanie i stok s lednikov v basseinax rek Sredney Azii (Melt and runoff from glaciers in the river basins of Central Asia). Hydrometeoizdat, Leningrad

    Google Scholar 

  • Konovalov VG (2011) Past and prospective changes in the state of Central Asian glaciers. Ice Snow 3:60–68

    Google Scholar 

  • Konovalov V, Desinov L (2007) Remote sensing monitoring of long term regime of the Pamirs glaciation. IAHS Publ 316:149–156

    Google Scholar 

  • Kotlyakov VM, Osipova GB, Tsvetkov DG (2008) Monitoring surging glaciers of the Pamirs, central Asia, from space. Ann Glaciol 48:125–134

    Article  Google Scholar 

  • Kure S, Jang S, Ohara N, Kavvas ML, Chen ZQ (2013) Hydrologic impact of regional climate change for the snowfed and glacierfed river basins in the Republic of Tajikistan: hydrological response of flow to climate change. Hydrol Process 27:4057–4070

    Article  Google Scholar 

  • Lambrecht A, Mayer C, Aizen V, Floricioiu D, Surazakov A (2014) The evolution of Fedchenko glacier in the Pamir, Tajikistan, during the past eight decades. J Glaciol 60:233–244

    Article  Google Scholar 

  • Makhmadaliev B, Novikov V, Kayumov A, Karimov U, Perdomo M (eds) (2003) National action plan of the Republic Tajikistan for climate change mitigation. Tajik Met Service, Dushanbe

    Google Scholar 

  • Oshanin VF (1879) Russian expedition to Hissar, Karateghin, and the Pamir. Proc R Geogr Soc Lond 1:64–66

    Google Scholar 

  • Rickmer-Rickmers W (1914) Vorläufiger Bericht über die Pamir-Expedition des DÖAV 1913. Zeitschrift des Deutschen und Österreichischen Alpenvereins 45:1–51

    Google Scholar 

  • Shchetinnikov A (1998) Morfologiya i rezhim lednikov Pamiro-Alaya (The Morphology and Regime of Pamir-Alay Glaciers). SANIIGMI, Tashkent

    Google Scholar 

  • UN (2004) Environmental performance reviews series no. 21 – Tajikistan. Economic Commission for Europe, Committee on Environmental Policy, United Nations, New York/Geneva

    Google Scholar 

  • UNEP (2006) Tajikistan: state of the environment 2005. United Nations Environment Programme, New York/Geneva

    Google Scholar 

  • UNEP (2011) Second assessment of transboundary rivers, lakes and groundwaters. United Nations, New York/Geneva

    Google Scholar 

  • UNEP (2014) The future of the Aral Sea lies in transboundary co-operation. UNEP Global Environment Alert Service. http://www.unep.org/pdf/UNEP_GEAS_JAN_2014.pdf. Accessed 15 Aug 2014

  • Weber M, Braun L, Mauser W, Prasch M (2009) The relevance of glacier melt for the upper Danube river discharge today and in the future. Mitteilungsblatt des Hydrographischen Dienstes in Österreich 86:1–29

    Google Scholar 

  • WGMS (1989) World Glacier Inventory. Status 1988. IAHS(ICSI)/UNEP/UNESCO, World Glacier Monitoring Service, Paris

    Google Scholar 

  • Yao T et al (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Chang 2:663–667

    Article  Google Scholar 

Download references

Acknowledgements

Wilfried Hagg was supported by the German Research Foundation (DFG, Project HA 5061/3-1). The work of Christoph Mayer was supported by funds of the Arbeitsgemeinschaft für vergleichende Hochgebirgsforschung and the TanDEM-X data proposal XTI_GLAC0335.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Hagg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hagg, W., Mayer, C. (2016). Water of the Pamir – Potential and Constraints. In: Kreutzmann, H., Watanabe, T. (eds) Mapping Transition in the Pamirs. Advances in Asian Human-Environmental Research. Springer, Cham. https://doi.org/10.1007/978-3-319-23198-3_5

Download citation

Publish with us

Policies and ethics