Skip to main content

Development and Maldevelopment of the Ventricular Outflow Tracts

  • Chapter
  • First Online:
Surgery of Conotruncal Anomalies

Abstract

In this chapter, we provide an account of cardiac development that, hopefully, will underscore the understanding of the surgical anatomy of the lesions to be contained within the overall book. The book alleges coverage of the surgical treatment of “conotruncal anomalies”. It is our belief that one of the lesions to be considered, namely congenitally correct transposition, requires abnormal looping of the developing heart tube as the primary abnormal developmental event. To put this lesion into context, therefore, we begin our account with a brief review of formation and looping of the heart tube. We then concentrate on the normal and abnormal development of the ventricular outflow tracts, although we question whether development is best considered in terms of the “conus” as opposed to the “truncus”. It is anatomically more accurate to address development of the outflow tract in terms of its proximal, intermediate, and distal components, and to consider these intrapericardial parts separately from the extrapericardial arterial pathways, which develop within the pharyngeal mesenchyme. The tripartite approach to development then permits rational explanations to be provided for formation of the ventricular outflow tract, the arterial valves and their supporting sinuses, and the intrapericardial arterial trunks. This approach to normal development permits analyses to be made of the lesions afflicting the different components, such as aortopulmonary windows, common arterial trunk, arterial valvar malformations, tetralogy of Fallot, double outlet right ventricle, and discordant ventriculo-arterial connections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson RH, Chaudhry B, Mohun TJ, Bamforth SD, Hoyland D, Phillips HM, Webb S, Moorman AF, Brown NA, Henderson DJ. Normal and abnormal development of the intrapericardial arterial trunks in humans and mice. Cardiovasc Res. 2012;95:108–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sizarov A, Lamers WH, Mohun TJ, Brown NA, Anderson RH, Moorman AF. Three-dimensional and molecular analysis of the arterial pole of the developing human heart. J Anat. 2012;220:336–49.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Webb S, Qayyum SR, Anderson RH, Lamers WH, Richardson MK. Septation and separation within the outflow tract of the developing heart. J Anat. 2003;202:327–42.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Patten BM, Kramer TC. The initiation of contractions in the embryonic chicken heart. Am J Anat. 1933;53:349–75.

    Article  Google Scholar 

  5. Viragh SZ, Challice CE. Origin and differentiation of cardiac muscle cells in the mouse. J Ultrastruct Res. 1973;42:1–24.

    Article  CAS  PubMed  Google Scholar 

  6. Arguello C, De la Cruz MV, Gomez CS. Experimental study of the formation of the heart tube in the chick embryo. J Embryol Exp Morphol. 1975;33:1–11.

    CAS  PubMed  Google Scholar 

  7. Kelly RG, Brown NA, Buckingham ME. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell. 2001;1:435–40.

    Article  CAS  PubMed  Google Scholar 

  8. Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, Norris RA, Kern MJ, Eisenberg CA, Turner D, Markwald RR. The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol. 2001;238:97–109.

    Article  CAS  PubMed  Google Scholar 

  9. Waldo KL, Kumiski DH, Wallis KT, Stadt HA, Hutson MR, Platt DH, Kirby ML. Conotruncal myocardium arises from a secondary heart field. Development. 2001;128:3179–88.

    CAS  PubMed  Google Scholar 

  10. Moorman AFM, Christoffels VM, Anderson RH, van den Hoff MJB. The heart-forming fields – one or multiple? Phil Trans R Soc B. 2007;362:1257–65.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Aanhaanen WT, Brons JF, Dominguez JN, et al. The Tbx2+ primary myocardium of the atrioventricular canal forms the atrioventricular node and the base of the left ventricle. Circ Res. 2009;104:1267–74.

    Article  CAS  PubMed  Google Scholar 

  12. Moorman AFM, Christoffels VM. Cardiac chamber formation: development, genes, and evolution. Physiol Rev. 2003;83:1223–67.

    Article  CAS  PubMed  Google Scholar 

  13. Eisenberg LM, Markwald RR. Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res. 1995;77:1–6.

    Article  CAS  PubMed  Google Scholar 

  14. Tenorio de Albuquerque A, Rigby ML, Anderson RH, Lincoln C, Shinebourne EA. The spectrum of atrioventricular discordance. A clinical study. Br Heart J. 1984;51:498–507.

    Article  Google Scholar 

  15. Kirby ML, Gale TF, Stewart DE. Neural crest cells contribute to normal aorticopulmonary septation. Science. 1983;220:1059–61.

    Article  CAS  PubMed  Google Scholar 

  16. Kramer TC. The partitioning of the truncus and conus and the formation of the membranous portion of the interventricular septum in the human heart. Am J Anat. 1942;71:343–70.

    Article  Google Scholar 

  17. Hinton Jr RB, Alfieri CM, Witt SA, Glascock BJ, Khoury PR, Benson DW, Yutzey KE. Mouse heart valve structure and function: echocardiographic and morphometric analyses from the fetus through the aged adult. Am J Phys Heart Circ. 2008;294:H2480–8.

    Article  CAS  Google Scholar 

  18. Bartelings MM, Gittenberger-de Groot AC. The outflow tract of the heart – embryologic and morphologic correlations. Int J Cardiol. 1989;22:289–300.

    Article  CAS  PubMed  Google Scholar 

  19. van den Hoff MJB, Moorman AFM, Ruijter JM, et al. Myocardialization of the cardiac outflow tract. Dev Biol. 1999;212:477–90.

    Article  PubMed  Google Scholar 

  20. Van Mierop LHS, Alley RD, Kausel HW, Stranahan A. Pathogenesis of transposition complexes. 1. Embryology of the ventricles and great arteries. Am J Cardiol. 1963;12:216–25.

    Article  Google Scholar 

  21. Edwards JE. Anomalies of the derivatives of the aortic arch system. Med Clin North Am. 1948;32:925–48.

    CAS  PubMed  Google Scholar 

  22. Yoo SJ, Bradley TJ. Vascular rings, pulmonary arterial sling, & related conditions. In: Anderson RH, Baker EJ, Penny D, Redington AN, Rigby MJ, Wernovsky G, editors. Paediatric cardiology. 3rd ed. Philadelphia: Elsevier; 2010. p. 967–90.

    Chapter  Google Scholar 

  23. Kiran VS, Singh MK, Shah S, John C, Maheshwari S. Lessons learned from a series of patients with missed aortopulmonary windows. Cardiol Young. 2008;18:480–4.

    Article  PubMed  Google Scholar 

  24. Fong LV, Anderson RH, Siewers RD, Trento A, Park SC. Anomalous origin of one pulmonary artery from the ascending aorta: a review of echocardiographic, catheter, and morphological features. Br Heart J. 1989;62:389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Van Praagh R, Van Praagh S. The anatomy of common aorticopulmonary trunk (truncus arteriosus communis) and its embryologic implications. A study of 57 necropsy cases. Am J Cardiol. 1965;16:406–25.

    Article  PubMed  Google Scholar 

  26. Van Mierop LHS, Patterson DF, Schnarr WR. Pathogenesis of persistent truncus arteriosus in light of observations made in a dog embryo with the anomaly. Am J Cardiol. 1978;41:755–62.

    Article  PubMed  Google Scholar 

  27. Collett RW, Edwards JE. Persistent truncus arteriosus; a classification according to anatomic types. Surg Clin North Am. 1949;29:1245–69.

    CAS  PubMed  Google Scholar 

  28. Russell HM, Jacobs ML, Anderson RH, Mavroudis C, Spicer D, Corcrain E, et al. A simplified categorization for common arterial trunk. J Thorac Cardiovasc Surg. 2011;141:645–53.

    Article  PubMed  Google Scholar 

  29. Sans-Coma V, Fernandez B, Duran AC, et al. Fusion of valve cushions as a key factor in the formation of congenital bicuspid aortic valves in Syrian hamsters. Anat Rec. 1996;244:490–8.

    Article  CAS  PubMed  Google Scholar 

  30. Fernandez B, Duran AC, Fernandez-Gallego T, et al. Bicuspid aortic valves with different spatial orientation of the leaflets are distinct etiological entities. J Am Coll Cardiol. 2009;54:2312–8.

    Article  PubMed  Google Scholar 

  31. Phillips HM, Mahendran P, Singh E, Anderson RH, Chaudhry B, Henderson DJ. Neural crest cells are required for correct positioning of the developing outflow cushions and pattern the arterial valve leaflets. Cardiovasc Res. 2013;99:452–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brandt PWT, Calder AL, Barratt-Boyes BG, Neutze JM. Double outlet left ventricle, morphology, cineangiocardiographic diagnosis and surgical treatment. Am J Cardiol. 1976;38:897–909.

    Article  CAS  PubMed  Google Scholar 

  33. Capuani A, Uemura H, Ho SY, Anderson RH. Anatomic spectrum of abnormal ventriculoarterial connections – surgical implications. Ann Thorac Surg. 1995;59:352–60.

    Article  CAS  PubMed  Google Scholar 

  34. Van Praagh R, David I, Wright GB, Van Praagh S. Large RV plus small LV is not single RV. Circulation. 1980;61:1057–8.

    PubMed  Google Scholar 

  35. Stellin G, Zuberbuhler JR, Anderson RH, Siewers RD. The surgical anatomy of the Taussig Bing malformation. J Thorac Cardiovasc Surg. 1987;93:560–9.

    CAS  PubMed  Google Scholar 

  36. Cavalle-Garrido T, Bernasconi A, Perrin D, Anderson RH. Hearts with concordant ventriculoarterial connections but parallel arterial trunks. Heart. 2007;93:100–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abbott ME. Atlas of congenital cardiac disease. New York: American Heart Association; 1936. p. 2.

    Google Scholar 

  38. Mohun TJ, Weninger WJ. Imaging heart development using high-resolution episcopic microscopy. Curr Opin Genet Dev. 2011;21:573–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are indebted to Professor Pete Scambler from the Institute of Child Health, University College, London, who has permitted us to use images obtained from mice engineered in his department. We also thank Dr Robert Kelly, University of Marseilles, for ongoing discussion regarding the Tbx1 knock-out mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Anderson BSc, MD, FRCPath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Anderson, R.H. et al. (2016). Development and Maldevelopment of the Ventricular Outflow Tracts. In: Lacour-Gayet, F., Bove, E., Hraška, V., Morell, V., Spray, T. (eds) Surgery of Conotruncal Anomalies. Springer, Cham. https://doi.org/10.1007/978-3-319-23057-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23057-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23056-6

  • Online ISBN: 978-3-319-23057-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics