Skip to main content

A Multi-scale Model for Mass Transport in Arteries and Tissue

  • Chapter
Recent Trends in Computational Engineering - CE2014

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 105))

Abstract

In this paper, we are concerned with the simulation of blood flow and mass transport in vascularized human tissue. Our mathematical model is based on a domain decomposition approach, i.e., we separate the blood vessel network from the tissue and assign different flow and transport models to them. In a second step, the different models are coupled in a weakly consistent way. Flow and transport processes within a 3D tissue are governed by standard equations for porous media flow while within the larger blood vessels less complex 1D models can be used, and the smaller blood vessels can be even treated by 0D lumped parameter models. This results in a 3D-1D-0D coupled multi-scale model. By means of this tri-directionally coupled system, the influence of a peripheral stenosis on tissue perfusion and oxygen supply is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alastruey, J., Parker, K., Peiro, J., Sherwin, S.: Lumped parameter outflow models for 1-D blood flow simulations: effect on pulse waves and parameter estimation. Commun. Comput. Phys. 4, 317–336 (2008)

    MathSciNet  Google Scholar 

  2. Andrus, J.F.: Numerical solution of systems of ordinary differential equations separated into subsystems. SIAM J. Numer. Anal. 16(4), 605–611 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  3. Behrends, J., Bischofberger, J., et. al.: Duale Reihe Physiologie, 2nd. Auflage. Thieme Verlag, Stuttgart (2012)

    Google Scholar 

  4. Canic, S., Kim, E.: Mathematical analysis of quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels. Math. Methods Appl. Sci. 26, 1161–1186 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cattaneo, L., Zunino, P.: Computational models for fluid exchange between microcirculation and tissue interstitium. Netw. Heterog. Media 9, 135–159 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. D’Angelo, C.: Multiscale modelling of metabolism and transport phenomena in living tissues. Ph.D. thesis, EPFL, Lausanne (2007)

    Google Scholar 

  7. D’Angelo, C., Quarteroni, A.: On the coupling of 1D and 3D diffusion-reaction equations. Applications to tissue perfusion problems. Math. Models Methods Appl. Sci. 18(8), 1481–1504 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Erbertseder, K.M.: A multi-scale model for describing cancer-therapeutic transport in the human lung. Ph.D. thesis, University of Stuttgart (2012)

    Google Scholar 

  9. Formaggia, L., Nobile, F., Veneziani, A., Quarteroni, A.: Multiscale modelling of the circulatory system: a preliminary analysis. Vis. Sci. 2, 75–83 (1999)

    Article  MATH  Google Scholar 

  10. Formaggia, L., Quarteroni, A., Veneziani, A.: Cardiovascluar mathematics-modelling and simulation of the circulatory system. Springer, Italia, Milano (2009)

    Google Scholar 

  11. Gear, C., Wells, D.: Multirate linear multistep methods. BIT 24(4), 484–502 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gottlieb, S., Shu, C.W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. 67, 73–85 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Khaled, A.R.A., Vafai, K.: The role of porous media in modeling flow and heat transfer in biological tissues. Int. J. Heat Mass Transf. 46(26), 4989–5003 (2003)

    Article  MATH  Google Scholar 

  14. Koeppl, T., Wohlmuth, B., Helmig, R.: Reduced one-dimensional modelling and numerical simulation for mass transport in fluids. Int. J. Numer. Methods Fluids 72(2), 135–156 (2013)

    Article  Google Scholar 

  15. Koeppl, T., Schneider, M., Pohl, U., Wohlmuth, B.: The influence of an unilateral carotid artery stenosis on brain oxygenation. Med. Eng. Phys. 36(7), 905–914 (2014)

    Article  Google Scholar 

  16. Krivodovona, L.: Limiters for high-order discontinuous Galerkin methods. J. Comput. Phys. 226, 879–896 (2007)

    Article  MathSciNet  Google Scholar 

  17. Kuzmin, D.: A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods. J. Comput. Appl. Math. 233, 3077–3085 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Schmidt, R., Lang, F., Heckmann, M.: Human Physiology, Second Completely, Revised Edition. Springer, Berlin, Heidelberg, New York (1989)

    Google Scholar 

  19. Sherwin, S., Franke, V., Peiro, J., Parker, K.: One-dimensional modelling of a vascular network in space-time variables. J. Eng. Math. 47, 217–250 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Stergiopulos, N., Young, D., Rogge, T.: Computer simulation of arterial flow with applications to arterial and aortic stenoses. J. Biomech. 25, 1477–1488 (1992)

    Article  Google Scholar 

  21. Vankan, W., Huyghe, J.M., Janssen, J., Huson, A., Hacking, W., Schreiner, W.: Finite element analysis of blood perfusion through biological tissue. Int. J. Eng. Sci. 35, 375–385 (1997)

    Article  MATH  Google Scholar 

  22. Wang, J., Parker, K.: Wave propagation in a model of the arterial circulation. J. Biomech. 37, 457–470 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Köppl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Köppl, T., Helmig, R., Wohlmuth, B. (2015). A Multi-scale Model for Mass Transport in Arteries and Tissue. In: Mehl, M., Bischoff, M., Schäfer, M. (eds) Recent Trends in Computational Engineering - CE2014. Lecture Notes in Computational Science and Engineering, vol 105. Springer, Cham. https://doi.org/10.1007/978-3-319-22997-3_12

Download citation

Publish with us

Policies and ethics