Skip to main content

Integration of FULLSWOF2D and PeanoClaw: Adaptivity and Local Time-Stepping for Complex Overland Flows

  • Chapter
Recent Trends in Computational Engineering - CE2014

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 105))

Abstract

We propose to couple our adaptive mesh refinement software PeanoClaw with existing solvers for complex overland flows that are tailored to regular Cartesian meshes. This allows us to augment them with spatial adaptivity and local time-stepping without altering the computational kernels. FullSWOF2D—Full Shallow Water Overland Flows—here is our software of choice though all paradigms hold for other solvers as well. We validate our hybrid simulation software in an artificial test scenario before we provide results for a large-scale flooding scenario of the Mecca region. The latter demonstrates that our coupling approach enables the simulation of complex “real-world” scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.univ-orleans.fr/mapmo/soft/FullSWOF/.

  2. 2.

    http://www.clawpack.org.

  3. 3.

    http://www.numerics.kaust.edu.sa/pyclaw.

  4. 4.

    http://www.vcc.kaust.edu.sa.

Acknowledgement

  1. Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25(6), 2050–2065 (2013)

    Article  MathSciNet  Google Scholar 

  2. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82(1), 64–84 (1989)

    Article  MATH  Google Scholar 

  3. Burstedde, C., Calhoun, D., Mandli, K., Terrel, A.R.: ForestClaw: hybrid forest-of-octrees AMR for hyperbolic conservation laws. In: Bader, M. Bode, A., Bungartz, H.-J., Gerndt, M., Joubert, G.R., Peters, F.J. (eds.) Parallel Computing: Accelerating Computational Science and Engineering (CSE), vol. 25. IOS Press, Amsterdam (2014)

    Google Scholar 

  4. Cordier, S., Coullon, H., Delestre, O., Laguerre, C., Le, M.-H., Pierre, D., Sadaka, G.: FullSWOF PARAL: comparison of two parallelization strategies (MPI and SkelGIS) on a software designed for hydrology application. In: Proceedings CEMRACS 2012, ESAIM: Proceedings, vol. 43, pp. 59–79 (2013)

    Article  MathSciNet  Google Scholar 

  5. Delestre, O., Lucas, C., Ksinant, P.-A., Darboux, F., Laguerre, C., Vo, T.N.T., James, F., Cordier, S.: SWASHES: a compilation of Shallow Water Analytic Solutions for Hydraulic and Environmental Studies, Int. J. Numer. Meth. Fl., 72(3), pp. 269–300 (2013)

    Article  MathSciNet  Google Scholar 

  6. Delestre, O., Cordier, S., Darboux, F., Mingxuan, D., James, F., Laguerre, C., Lucas, C., Planchon, O.: FullSWOF: a software for overland flow simulation. In: Gourbesville, P., Cunge, J., Caignaert, G. (eds.) Advances in Hydroinformatics – SIMHYDRO 2012 – New Frontiers of Simulation. Springer Hydrogeology, pp. 221–231. Springer, Singapore (2014)

    Google Scholar 

  7. Delestre, O., Darboux, F., James, F., Lucas, C., Laguerre, C., Cordier, S.: FullSWOF: a free software package for the simulation of shallow water flows. http://www.arxiv.org/abs/1401.4125 (2014)

  8. Dumbser, M., Käser, M., Toro, E.F.: An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes – V. Local time stepping and p-adaptivity. Geophys. J. Int. 171(2), 695–717 (2007)

    Google Scholar 

  9. Dyck, S., Peschke, G.: Grundlagen der Hydrologie. Verlag für Bauwesen GmbH, Berlin (1995)

    Google Scholar 

  10. Green, W.H., Ampt, G.A.: Studies on soil physics: 1, flow of air and water through soils. J. Agric. Sci. 4, 1–24 (1911)

    Article  Google Scholar 

  11. Ketcheson, D.I., Mandli, K., Ahmadia, A.J., Alghamdi, A., de Luna, M.Q., Parsani, M., Knepley, M.G., Emmett, M.: PyClaw: accessible, extensible, scalable tools for wave propagation problems. SIAM J. Sci. Comput. 34(4), C210–C231 (2012)

    Article  MATH  Google Scholar 

  12. van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–139 (1979)

    Google Scholar 

  13. LeVeque, R.J., George, D.L., Berger, M.J.: Tsunami modelling with adaptively refined finite volume methods. Acta Numerica 20, 211–289 (2001)

    Article  MathSciNet  Google Scholar 

  14. Moussa, R., Bocquillon, C.: Approximation zones of the Saint-Venant equations for flood routing with overbank flow. Hydrol. Earth Syst. Sci. 4(2), 251–261 (2000)

    Article  Google Scholar 

  15. Novak, P., Guinot, V., Jeffrey, A., Reeve, D.E.: Hydraulic Modelling – An Introduction. CRC Press, Boca Raton (2010)

    Google Scholar 

  16. Thabet, A., Smith, N., Wittmann, R., Schneider, J.: A visual framework for digital reconstruction of topographic maps. http://www.hdl.handle.net/10754/332722 (2014)

  17. Unterweger K., Weinzierl, T., Ketcheson, D.I., Ahmadia, A.: Peanoclaw: a functionally-decomposed approach to adaptive mesh refinement with local time stepping for hyperbolic conservation law solvers. Technical Report TUM-I1332, Technische Universität München (2013)

    Google Scholar 

  18. Weinzierl, T., Mehl, M.: Peano – a traversal and storage scheme for octree-like adaptive cartesian multiscale grids. SIAM J. Sci. Comput. 33(5), 2732–2760 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Weinzierl, T., Others: Peano—a Framework for PDE solvers on spacetree grids. http://www.peano-framework.org (2012)

  20. Weinzierl, T., Bader, M., Unterweger, K., Wittmann, R.: Block fusion on dynamically adaptive spacetree grids for shallow water waves. Parallel Process. Lett. 24(3), 1441006 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Award No. UK-C0020 made by King Abdullah University of Science and Technology (KAUST). We also want to thank the KAUST Visual Computing Center for granting us access to the reconstructed data elevation maps of Mecca, Saudi-Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Neumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Unterweger, K., Wittmann, R., Neumann, P., Weinzierl, T., Bungartz, HJ. (2015). Integration of FULLSWOF2D and PeanoClaw: Adaptivity and Local Time-Stepping for Complex Overland Flows. In: Mehl, M., Bischoff, M., Schäfer, M. (eds) Recent Trends in Computational Engineering - CE2014. Lecture Notes in Computational Science and Engineering, vol 105. Springer, Cham. https://doi.org/10.1007/978-3-319-22997-3_11

Download citation

Publish with us

Policies and ethics