Skip to main content

Robust Estimation for Computer Vision Using Grassmann Manifolds

  • Chapter
Riemannian Computing in Computer Vision

Abstract

Real-world visual data are often corrupted and require the use of estimation techniques that are robust to noise and outliers. Robust methods are well studied for Euclidean spaces and their use has also been extended to Riemannian spaces. In this chapter, we present the necessary mathematical constructs for Grassmann manifolds, followed by two different algorithms that can perform robust estimation on them. In the first one, we describe a nonlinear mean shift algorithm for finding modes of the underlying kernel density estimate (KDE). In the second one, a user-independent robust regression algorithm, the generalized projection-based M-estimator (gpbM), is detailed. We show that the gpbM estimates are significantly improved if KDE optimization over the Grassmann manifold is also included. The results for a few real-world computer vision problems are shown to demonstrate the importance of performing robust estimation using Grassmann manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cetingul H, Vidal R (2009) Intrinsic mean shift for clustering on Stiefel and Grassmann manifolds. In: CVPR, pp 1896–1902

    Google Scholar 

  2. Christoudias CM, Georgescu B, Meer P (2002) Synergism in low level vision. In: ICPR, pp 150–155

    Google Scholar 

  3. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Article  Google Scholar 

  4. Edelman A, Arias TA, Smith ST (1999) The geometry of algorithms with orthogonality constraints. SIAM J Matrix Anal Appl 20(2):303–353

    Article  MathSciNet  Google Scholar 

  5. Fischler MA, Bolles RC (1981) Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395

    Article  MathSciNet  Google Scholar 

  6. Hartley RI, Zisserman A (2004) Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  7. Hartley R, Trumpf J, Dai Y, Li H (2013) Rotation averaging. Int J Comput Vis 103(3):267–305

    Article  MATH  MathSciNet  Google Scholar 

  8. Hauberg S, Feragen A, Black MJ (2014) Grassmann averages for scalable robust PCA. In: CVPR, pp 3810–3817

    Google Scholar 

  9. He J, Balzano L, Szlam A (2012) Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video. In: CVPR, pp 1568–1575

    Google Scholar 

  10. Jain S, Govindu V (2013) Efficient higher-order clustering on the Grassmann manifold. In: ICCV, pp 3511–3518

    Google Scholar 

  11. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  12. Mittal S, Meer P (2012) Conjugate gradient on Grassmann manifolds for robust subspace estimation. Image Vis Comput 30(6–7):417–427

    Article  Google Scholar 

  13. Mittal S, Anand S, Meer P (2012) Generalized projection-based M-estimator. IEEE Trans Pattern Anal Mach Intell 34(12):2351–2364

    Article  Google Scholar 

  14. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C. The art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  15. Raguram R, Frahm JM, Pollefeys M (2008) A comparative analysis of RANSAC techniques leading to adaptive real-time random sample consensus. In: ECCV, pp 500–513

    Google Scholar 

  16. Shrivastava A, Shekhar S, Patel VM (2014) Unsupervised domain adaptation using parallel transport on Grassmann manifold. In: WACV, pp 277–284

    Google Scholar 

  17. Subbarao R, Meer P (2006) Beyond RANSAC: user independent robust regression. In: IEEE CVPR Workshop on 25 years of RANSAC, p 101

    Google Scholar 

  18. Subbarao R, Meer P (2007) Discontinuity preserving filtering over analytic manifolds. In: CVPR, pp 1–6

    Google Scholar 

  19. Subbarao R, Meer P (2009) Nonlinear mean shift over Riemannian manifolds. Int J Comput Vis 84(1):1–20

    Article  Google Scholar 

  20. Turaga P, Veeraraghavan A, Srivastava A, Chellappa R (2011) Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition. IEEE Trans Pattern Anal Mach Intell 33(11):2273–2286

    Article  Google Scholar 

  21. Xu J, Ithapu V, Mukherjee L, Rehg J, Singh V (2013) GOSUS: Grassmannian online subspace updates with structured-sparsity. In: ICCV, pp 3376–3383

    Google Scholar 

  22. Yang L (2010) Riemannian median and its estimation. LMS J Comput Math 13:461–479

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saket Anand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Anand, S., Mittal, S., Meer, P. (2016). Robust Estimation for Computer Vision Using Grassmann Manifolds. In: Turaga, P., Srivastava, A. (eds) Riemannian Computing in Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-319-22957-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22957-7_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22956-0

  • Online ISBN: 978-3-319-22957-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics