Skip to main content

Elastic Shape Analysis of Surfaces and Images

  • Chapter
Riemannian Computing in Computer Vision

Abstract

We describe two Riemannian frameworks for statistical shape analysis of parameterized surfaces. These methods provide tools for registration, comparison, deformation, averaging, statistical modeling, and random sampling of surface shapes. A crucial property of both of these frameworks is that they are invariant to reparameterizations of surfaces. Thus, they result in natural shape comparisons and statistics. The first method we describe is based on a special representation of surfaces termed square-root functions (SRFs). The pullback of the \(\mathbb{L}^{2}\) metric from the SRF space results in the Riemannian metric on the space of surfaces. The second method is based on the elastic surface metric. We show that a restriction of this metric, which we call the partial elastic metric, becomes the standard \(\mathbb{L}^{2}\) metric under the square-root normal field (SRNF) representation. We show the advantages of these methods by computing geodesic paths between highly articulated surfaces and shape statistics of manually generated surfaces. We also describe applicationsĀ of this framework to image registration and medical diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It is interesting to note that the first two terms in the full elastic metric form the unique family of ultralocal metrics on the space of Riemannian metrics on which diffeomorphisms act by isometriesĀ [14]. The \(\lambda = 0\) case of this metric on Riemannian metrics has been studied in e.g.,Ā [10, 16, 18].

References

  1. Abe K, Erbacher J (1975) Isometric immersions with the same Gauss map. Math Ann 215(3):197ā€“201

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  2. Almhdie A, LĆ©ger C, Deriche M, LĆ©dĆ©e R (2007) 3D registration using a new implementation of the ICP algorithm based on a comprehensive lookup matrix: application to medical imaging. Pattern Recogn Lett 28(12):1523ā€“1533

    ArticleĀ  Google ScholarĀ 

  3. Bauer M, Bruveris M (2011) A new Riemannian setting for surface registration. In: International workshop on mathematical foundations of computational anatomy, ppĀ 182ā€“193

    Google ScholarĀ 

  4. Beg M, Miller M, TrouvĆ© A, Younes L (2005) Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int J Comput Vis 61(2):139ā€“157

    ArticleĀ  Google ScholarĀ 

  5. Bouix S, Pruessner JC, Collins DL, Siddiqi K (2001) Hippocampal shape analysis using medial surfaces. NeuroImage 25:1077ā€“1089

    ArticleĀ  Google ScholarĀ 

  6. BrechbĆ¼hler C, Gerig G, KĆ¼bler O (1995) Parameterization of closed surfaces for 3D shape description. Comput Vis Image Underst 61(2):154ā€“170

    ArticleĀ  Google ScholarĀ 

  7. Burden MJ, Jacobson JL, Westerlund AJ, Lundahl LH, Klorman R, Nelson CA, Avison MJ, Jacobson SW (2010) An event-related potential study of response inhibition in ADHD with and without prenatal alcohol exposure. Alcohol Clin Exp Res 34(4):617ā€“627

    ArticleĀ  Google ScholarĀ 

  8. Cates J, Meyer M, Fletcher P, Whitaker R (2006) Entropy-based particle systems for shape correspondence. In: International workshop on mathematical foundations of computational anatomy, ppĀ 90ā€“99

    Google ScholarĀ 

  9. Christensen GE, Johnson H (2001) Consistent image registration. IEEE Trans Med Imaging 20(7):568ā€“582

    ArticleĀ  Google ScholarĀ 

  10. Clarke B (2010) The metric geometry of the manifold of Riemannian metrics over a closed manifold. Calc Var Partial Differ Equ 39(3):533ā€“545

    ArticleĀ  MATHĀ  Google ScholarĀ 

  11. Csernansky JG, Wang L, Jones DJ, Rastogi-Cru D, Posener G, Heydebrand JA, Miller JP, Grenander U, Miller MI (2002) Hippocampal deformities in schizophrenia characterized by high dimensional brain mapping. Am J Psychiatry 159(12):1ā€“7

    ArticleĀ  Google ScholarĀ 

  12. Davatzikos C, Vaillant M, Resnick S, Prince JL, Letovsky S, Bryan RN (1996) A computerized method for morphological analysis of the corpus callosum. J Comput Assist Tomogr 20:88ā€“97

    ArticleĀ  Google ScholarĀ 

  13. Davies RH, Twining CJ, Cootes TF, Taylor CJ (2010) Building 3-D statistical shape models by direct optimization. IEEE Trans Med Imaging 29(4):961ā€“981

    ArticleĀ  Google ScholarĀ 

  14. DeWitt BS (1967) Quantum theory of gravity. I. The canonical theory. Phys Rev 160(5):1113ā€“1148

    MATHĀ  Google ScholarĀ 

  15. Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, New York

    MATHĀ  Google ScholarĀ 

  16. Ebin D (1970) The manifold of Riemannian metrics. In: Symposia in pure mathematics (AMS), volĀ 15, ppĀ 11ā€“40

    Google ScholarĀ 

  17. Gerig G, Styner M, Shenton ME, Lieberman JA (2001) Shape versus size: improved understanding of the morphology of brain structures. In: MICCAI, ppĀ 24ā€“32 (2001)

    Google ScholarĀ 

  18. Gil-Medrano O, Michor PW (1991) The Riemannian manifold of all Riemannian metrics. Q J Math 42:183ā€“202

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  19. Gorczowski K, Styner M, Jeong JY, Marron JS, Piven J, Hazlett HC, Pizer SM, Gerig G (2010) Multi-object analysis of volume, pose, and shape using statistical discrimination. IEEE Trans Pattern Anal Mach Intell 32(4):652ā€“666

    ArticleĀ  Google ScholarĀ 

  20. Grenander U, Miller MI (1998) Computational anatomy: an emerging discipline. Q Appl Math LVI(4):617ā€“694

    Google ScholarĀ 

  21. Gu X, Vemuri BC (2004) Matching 3D shapes using 2D conformal representations. In: MICCAI, ppĀ 771ā€“780

    Google ScholarĀ 

  22. Gu X, Wang S, Kim J, Zeng Y, Wang Y, Qin H, Samaras D (2007) Ricci flow for 3D shape analysis. In: IEEE international conference on computer vision, ppĀ 1ā€“8

    Google ScholarĀ 

  23. Jacobson SW, Jacobson JL, Sokol RJ, Chiodo LM, Corobana R (2004) Maternal age, alcohol abuse history, and quality of parenting as moderators of the effects of prenatal alcohol exposure on 7.5-year intellectual function. Alcohol Clin Exp Res 28:1732ā€“1745

    ArticleĀ  Google ScholarĀ 

  24. Jacobson SW, Jacobson JL, Sokol RJ, Martier SS, Chiodo LM (1996) New evidence for neurobehavioral effects of in utero cocaine exposure. J Pediatr 129:581ā€“590

    ArticleĀ  Google ScholarĀ 

  25. Jermyn IH, Kurtek S, Klassen E, Srivastava A (2012) Elastic shape matching of parameterized surfaces using square root normal fields. In: European conference on computer vision, ppĀ 804ā€“817

    Google ScholarĀ 

  26. Joshi S, Miller M, Grenander U (1997) On the geometry and shape of brain sub-manifolds. Pattern Recogn Artif Intell 11:1317ā€“1343

    ArticleĀ  Google ScholarĀ 

  27. Joshi SH, Klassen E, Srivastava A, Jermyn IH (2007) A novel representation for Riemannian analysis of elastic curves in \(\mathbb{R}^{n}\). In: IEEE conference on computer vision and pattern recognition, ppĀ 1ā€“7

    Google ScholarĀ 

  28. van Kaick O, Zhang H, Hamarneh G, Cohen-Or D (2010) A survey on shape correspondence. In: Eurographics state-of-the-art report, ppĀ 1ā€“24

    Google ScholarĀ 

  29. Kelemen A, Szekely G, Gerig G (1999) Elastic model-based segmentation of 3D neurological data sets. IEEE Trans Med Imaging 18(10):828ā€“839

    ArticleĀ  Google ScholarĀ 

  30. Kilian M, Mitra NJ, Pottmann H (2007) Geometric modeling in shape space. ACM Trans Graph 26(3):64

    ArticleĀ  Google ScholarĀ 

  31. Kurtek S, Klassen E, Ding Z, Avison MJ, Srivastava A (2011) Parameterization-invariant shape statistics and probabilistic classification of anatomical surfaces. In: Information processing in medical imaging, ppĀ 147ā€“158

    Google ScholarĀ 

  32. Kurtek S, Klassen E, Ding Z, Jacobson SW, Jacobson JL, Avison MJ, Srivastava A (2011) Parameterization-invariant shape comparisons of anatomical surfaces. IEEE Trans Med Imaging 30(3):849ā€“858

    ArticleĀ  Google ScholarĀ 

  33. Kurtek S, Klassen E, Ding Z, Srivastava A (2010) A novel Riemannian framework for shape analysis of 3D objects. In: IEEE conference on computer vision and pattern recognition, ppĀ 1625ā€“1632

    Google ScholarĀ 

  34. Kurtek S, Klassen E, Gore J, Ding Z, Srivastava A (2012) Elastic geodesic paths in shape space of parameterized surfaces. IEEE Trans Pattern Anal Mach Intell 34(9):1717ā€“1730

    ArticleĀ  Google ScholarĀ 

  35. Kurtek S, Klassen E, Gore JC, Ding Z, Srivastava A (2011) Classification of mathematics deficiency using shape and scale analysis of 3D brain structures. In: SPIE medical imaging: image processing, volĀ 7962

    Google ScholarĀ 

  36. Kurtek S, Samir C, Ouchchane L (2014) Statistical shape model for simulation of realistic endometrial tissue. In: International conference on pattern recognition applications and methods

    Google ScholarĀ 

  37. Kurtek S, Srivastava A, Klassen E, Ding Z (2012) Statistical modeling of curves using shapes and related features. J Am Stat Assoc 107(499):1152ā€“1165

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  38. Kurtek S, Srivastava A, Klassen E, Laga H (2013) Landmark-guided elastic shape analysis of spherically-parameterized surfaces. Comput Graph Forum 32(2):429ā€“438

    ArticleĀ  Google ScholarĀ 

  39. Malladi R, Sethian JA, Vemuri BC (1996) A fast level set based algorithm for topology-independent shape modeling. J Math Imaging Vis 6:269ā€“290

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  40. Mio W, Srivastava A, Joshi SH (2007) On shape of plane elastic curves. Int J Comput Vis 73(3):307ā€“324

    ArticleĀ  Google ScholarĀ 

  41. Samir C, Kurtek S, Srivastava A, Canis M (2014) Elastic shape analysis of cylindrical surfaces for 3D/2D registration in endometrial tissue characterization. IEEE Trans Med Imaging 33(5):1035ā€“1043

    ArticleĀ  Google ScholarĀ 

  42. Srivastava A, Klassen E, Joshi SH, Jermyn IH (2011) Shape analysis of elastic curves in Euclidean spaces. IEEE Trans Pattern Anal Mach Intell 33(7):1415ā€“1428

    ArticleĀ  Google ScholarĀ 

  43. Srivastava A, Turaga P, Kurtek S (2012) On advances in differential-geometric approaches for 2D and 3D shape analyses and activity recognition. Image Vis Comput 30(6ā€“7):398ā€“416

    ArticleĀ  Google ScholarĀ 

  44. Styner M, Oguz I, Xu S, BrechbĆ¼hler C, Pantazis D, Levitt J, Shenton ME, Gerig G (2006) Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Insight J 1071:242ā€“250

    Google ScholarĀ 

  45. Tagare H, Groisser D, Skrinjar O (2009) Symmetric non-rigid registration: a geometric theory and some numerical techniques. J Math Imaging Vis 34(1):61ā€“88

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  46. Vaillant M, Glaunes J (2005) Surface matching via currents. In: Information processing in medical imaging, ppĀ 381ā€“392

    Google ScholarĀ 

  47. Xie Q, Jermyn IH, Kurtek S, Srivastava A (2014) Numerical inversion of SRNFs for efficient elastic shape analysis of star-shaped objects. In: European conference on computer vision, ppĀ 485ā€“499

    Google ScholarĀ 

  48. Xie Q, Kurtek S, Christensen GE, Ding Z, Klassen E, Srivastava A (2012) A novel framework for metric-based image registration. In: Workshop on biomedical image registration, ppĀ 276ā€“285

    Google ScholarĀ 

  49. Xie Q, Kurtek S, Klassen E, Christensen GE, Srivastava A (2014) Metric-based pairwise and multiple image registration. In: European conference on computer vision, ppĀ 236ā€“250

    Google ScholarĀ 

  50. Xie Q, Kurtek S, Le H, Srivastava A (2013) Parallel transport of deformations in shape space of elastic surfaces. In: IEEE international conference on computer vision, pp.Ā 865ā€“872

    Google ScholarĀ 

  51. Younes L (1998) Computable elastic distance between shapes. SIAM J Appl Math 58(2):565ā€“586

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

Download references

Acknowledgements

This work was partially supported by a grant from the Simons Foundation (#317865 to Eric Klassen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Kurtek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kurtek, S., Jermyn, I.H., Xie, Q., Klassen, E., Laga, H. (2016). Elastic Shape Analysis of Surfaces and Images. In: Turaga, P., Srivastava, A. (eds) Riemannian Computing in Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-319-22957-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22957-7_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22956-0

  • Online ISBN: 978-3-319-22957-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics