Skip to main content

Rehabilitation, Neuroprosthetics and Brain-Machine Interfaces

  • Chapter
Medical Robotics

Abstract

Most stroke patients need rehabilitation training and physiotherapy. For example, it is possible that a stroke patient can move the left, but not the right hand. Then a very simple training device can help. This device is a tendon-driven hand support, controlled via two commands: grasp and release. The patient can switch between the two states with the healthy hand, and then learn simple tasks requiring both hands. Frequent use of the device in daily routine can improve the results of physiotherapy, e.g. strengthen the right arm, and even help the right hand. An improved version of this device offers more commands, i.e. moving the index finger, so that the patient can type on a keyboard or dial phone numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Ansari, C. Myrtus, R. Aherrahrou, J. Erdmann, A. Schweikard, and G. Hüttmann. Ultrahigh-resolution, high-speed spectral domain optical coherence phase microscopy. Optics Letters, 39(1):45–47, 2014. DOI 10.1364/ol.39.000045.

    Article  Google Scholar 

  2. J. K. Chapin, K. A. Moxon, R. S. Markowitz, and M. A. L. Nicolelis. Real-time control of a robot arm using simultaneously recorded neurons. Nature Neuroscience, 2(7): 664–670, 1999. DOI 10.1038/10223.

    Article  Google Scholar 

  3. R. Colombo, F. Pisano, S. Micera, A. Mazzone, C. Delconte, M. C. Carrozza, P. Dario, and G. Minuco. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13(3):311–324, 2005. DOI 10.1109/tnsre.2005.848352.

    Article  Google Scholar 

  4. G. S. Dhillon and K. W. Horch. Direct neural sensory feedback and control of a prosthetic arm. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13(4):468–472, 2005. DOI 10.1109/tnsre.2005.856072.

    Article  Google Scholar 

  5. L. A. Farwell and E. Donchin. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology, 70(6):510–523, 1988. DOI 10.1016/0013-4694(88)90149-6.

    Article  Google Scholar 

  6. L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, and J. P. Donoghue. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 485(7398):372–375, 2012. DOI 10.1038/nature11076.

    Article  Google Scholar 

  7. D. H. Hubel and T. N. Wiesel. Receptive fields of single neurones in the cat’s striate cortex. The Journal of Physiology, 148(3):574–591, 1959. DOI 10.1113/jphysiol.1959.sp006308.

    Article  Google Scholar 

  8. D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160(1):106–154, 1962. DOI 10.1113/jphysiol.1962.sp006837.

    Article  Google Scholar 

  9. C. H. Hwang, J. W. Seong, and D.-S. Son. Individual finger synchronized robot-assisted hand rehabilitation in subacute to chronic stroke: a prospective randomized clinical trial of efficacy. Clinical Rehabilitation, 26(8):696–704, 2012. DOI 10.1177/0269215511431473.

    Article  Google Scholar 

  10. P.-J. Kindermans, D. Verstraeten, and B. Schrauwen. A Bayesian model for exploiting application constraints to enable unsupervised training of a P300-based BCI. PLoS ONE, 7(4):e33758, 2012. DOI 10.1371/journal.pone.0033758.

  11. H. I. Krebs, B. T. Volpe, D. Williams, J. Celestino, S. K. Charles, D. Lynch, and N. Hogan. Robot-aided neurorehabilitation: A robot for wrist rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(3):327–335, 2007. DOI 10.1109/tnsre.2007.903899.

    Article  Google Scholar 

  12. T. A. Kuiken, G. A. Dumanian, R. D. Lipschutz, L. A. Miller, and K. A. Stubblefield. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthetics and Orthotics International, 28(3):245–253, 2004. DOI 10.3109/03093640409167756.

    Google Scholar 

  13. T. A. Kuiken, G. Li, A. Lock, R. D. Lipschutz, L. A. Miller, K. A. Stubblefield, and K. B. Englehart. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA, 301(6):619–628, 2009. DOI 10.1001/jama.2009.116.

    Article  Google Scholar 

  14. P. S. Lum, C. G. Burgar, and P. C. Shor. Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(2):186–194, 2004. DOI 10.1109/tnsre.2004.827225.

    Article  Google Scholar 

  15. Y.-L. Park, B.-r. Chen, D. Young, L. Stirling, R. J. Wood, E. Goldfield, and R. Nagpal. Bio-inspired active soft orthotic device for ankle foot pathologies. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011, pages 4488–4495. DOI 10.1109/iros.2011.6094933.

  16. R. Riener, L. Lunenburger, S. Jezernik, M. Anderschitz, G. Colombo, and V. Dietz. Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13(3):380–394, 2005. DOI 10.1109/tnsre.2005.848628.

    Article  Google Scholar 

  17. G. Vanacker, J. d. R. Millán, E. Lew, P. W. Ferrez, F. G. Moles, J. Philips, H. Van Brussel, and M. Nuttin. Context-based filtering for assisted brain-actuated wheelchair driving. Computational Intelligence and Neuroscience, 2007:25130, 2007. DOI 10.1155/2007/25130.

  18. M. Velliste, S. Perel, M. C. Spalding, A. S. Whitford, and A. B. Schwartz. Cortical control of a prosthetic arm for self-feeding. Nature, 453(7198):1098–1101, 2008. DOI 10.1038/nature06996.

    Article  Google Scholar 

  19. R. J. Webster, J. S. Kim, N. J. Cowan, G. S. Chirikjian, and A. M. Okamura. Nonholonomic modeling of needle steering. The International Journal of Robotics Research, 25(5-6):509–525, 2006. DOI 10.1177/0278364906065388.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schweikard, A., Ernst, F. (2015). Rehabilitation, Neuroprosthetics and Brain-Machine Interfaces. In: Medical Robotics. Springer, Cham. https://doi.org/10.1007/978-3-319-22891-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22891-4_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22890-7

  • Online ISBN: 978-3-319-22891-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics