Skip to main content

Abstract

Water scarcity has emerged as one of the key issues for food and environmental sustainability in the twenty-first century. Agriculture is far and away the largest consumer of water in the world, and irrigated agriculture accounts for 70 % of all freshwater withdrawals globally. An increasing portion of this is coming from groundwater, which is favored by farmers. However, shortages are emerging in many places and these are expected to result in curtailed supplies of irrigation water to farming. While irrigated area accounts for less than 20 % of all cropland, it accounts for about 40 % of production, and attempts to reduce this dependence will require significant expansion of rainfed area to make up for the resulting production losses. Fortunately, there is considerable scope for increasing the efficiency of water use in agriculture, through improved delivery to the plants, as well as through increased water use efficiency by the plants themselves. This chapter explores the role of water in agriculture in some detail as well as offering a series of simulation results, based on SIMPLE, to highlight the interplay between restrictions on irrigated agriculture and global land use change.

This chapter draws heavily on the OECD report written by Hertel and Liu (2014).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050 (the 2012 revision) (ESA Working Paper No. 12 - 03). Rome, Italy: FAO. Retrieved from http://www.fao.org/fileadmin/templates/esa/Global_persepctives/world_ag_2030_50_2012_rev.pdf.

    Google Scholar 

  • Bjornlund, H., & McKay, J. (2002). Aspects of water markets for developing countries: experiences from Australia, Chile, and the U.S.. Environment and Development Economics, 7(04), 769–795. http://doi.org/10.1017/S1355770X02000463.

  • Bruinsma, J. (2009). The resource outlook to 2050. By how much do land, water use and crop yields need to increase by 2050? In FAO Expert meeting on how to feed the world in 2050. Rome, Italy: Food and Agriculture Organisation of the UN.

    Google Scholar 

  • Burke, J., Villholth, K. (2007). Groundwater: a global assessment of scale and significance, in: Molden, D. (Ed.), Water for Food, Water for Life. Earthscan and International Water Management Institute, London and Colombo, pp. 395–423.

    Google Scholar 

  • Chao, B.F., Wu, Y.H., Li, Y.S., (2008). Impact of Artificial Reservoir Water Impoundment on Global Sea Level. Science 320, 212–214. doi:10.1126/science.1154580.

    Google Scholar 

  • Craig, Ian, Andrew Green, Michael Scobie, and Erik Schmidt. (2005). “Controlling Evaporation Loss from Water Storages.” Report 1000580/1. Toowoomba, Australia: University of Southern Queensland, National Centre for Engineering in Agriculture. http://www.ncea.org.au/Evaporation%20Resources/index_files/Page1668.htm.

  • De Fraiture, C., Wichelns, D., Rockstrom, J., Kemp-Benedict, E., Eriyagama, N., Gordon, L. J., … Karlberg, L. (2007). Looking ahead to 2050: scenarios of alternative investment approaches. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=QL2012001800.

  • Döll, P., Hoffmann-Dobrev, H., Portmann, F. T., Siebert, S., Eicker, A., Rodell, M., Strassberg, G., Scanlon, B. R. (2012). Impact of water withdrawals from groundwater and surface water on continental water storage variations. J. Geodyn. 59–60, 143–156. doi:10.1016/j.jog.2011.05.001.

    Google Scholar 

  • Eshel, G., Shepon, A., Makov, T., & Milo, R. (2014). Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States. Proceedings of the National Academy of Sciences of the United States of America, 111(33), 11996–12001. http://doi.org/10.1073/pnas.1402183111.

    Article  CAS  Google Scholar 

  • Fargher, W. (2014). Responding to scarcity: Lessons from Australian water markets in supporting agricultural productivity during drought. OECD. Retrieved from http://www.oecd.org/tad/sustainable-agriculture/49192129.pdf.

  • Füssel, H.- M., Heinke, J., Popp, A., Gerten, D. (2012). Climate Change and Water Supply, in: Edenhofer, O., Wallacher, J., Lotze-Campen, H., Reder, M., Knopf, B., Müller, J. (Eds.), Climate Change, Justice and Sustainability. Springer Netherlands, pp. 19–32.

    Google Scholar 

  • Grafton, R. Q., Pittock, J., Davis, R., Williams, J., Fu, G., Warburton, M., … Quiggin, J. (2013). Global insights into water resources, climate change and governance. Nature Climate Change, 3(4), 315–321. http://doi.org/10.1038/nclimate1746.

    Google Scholar 

  • Hertel, T. W., & Liu, J. (2014). Implications of water scarcity for economic growth. Paris: OECD Working Paper. ENV/EPOC 17.

    Google Scholar 

  • Helfer, Fernanda, Charles Lemckert, and Hong Zhang. (2012). “Impacts of Climate Change on Temperature and Evaporation from a Large Reservoir in Australia.” Journal of Hydrology 475 (December): 365–78. doi:10.1016/j.jhydrol.2012.10.008.

    Google Scholar 

  • Keller, A., & Seckler, D. (2008, July). Transpiration: Constraints on increasing the productivity of water in crop production. Winrock Water Forum.

    Google Scholar 

  • Liu, J., Hertel, T., Taheripour, F., Zhu, T., & Ringler, C. (2014). International trade buffers the impact of future irrigation shortfalls. Global Environmental Change, 29, 22–31.

    Article  Google Scholar 

  • Mekonnen, M. M., & Hoekstra, A. Y. (2012). A global assessment of the water footprint of farm animal products. Ecosystems, 15(3), 401–415. http://doi.org/10.1007/s10021-011-9517-8.

    Article  CAS  Google Scholar 

  • Milly, P. C. D., Dunne, K. A., Vecchia, A. V. (2005). Global pattern of trends in streamflow and water availability in a changing climate. Nature 438, 347–350. doi:10.1038/nature04312.

    Google Scholar 

  • Molden, D. (2007). Water for food, water for life: A comprehensive assessment of water management in agriculture. London, UK: Earthscan.

    Google Scholar 

  • National Water Commission. (2011). Water markets in Australia: a short history. Canberra, Australia: NWC.

    Google Scholar 

  • Pavelic, P., Patankar, U., Acharya, S., Jella, K., Gumma, M. K. (2012). Role of groundwater in buffering irrigation production against climate variability at the basin scale in South-West India. Agric. Water Manag. 103, 78–87. doi:10.1016/j.agwat.2011.10.019.

    Google Scholar 

  • Rockström, J., Karlberg, L., Wani, S. P., Barron, J., Hatibu, N., Oweis, T., … Qiang, Z. (2010). Managing water in rainfed agriculture—The need for a paradigm shift. Agricultural Water Management, 97(4), 543–550. http://doi.org/10.1016/j.agwat.2009.09.009.

    Google Scholar 

  • Rosegrant, M. W., Cai, X., (2002). Global Water Demand and Supply Projections. Water Int. 27, 170–182. doi:10.1080/02508060208686990.

    Google Scholar 

  • Rosegrant, M. W., Ringler, C., Zhu, T., Tokgoz, S., & Bhandary, P. (2013). Water and food in the global bioeconomy: Challenges and opportunities for development. Agricultural Economics, 44(s1), 139–150.

    Article  Google Scholar 

  • Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P., Portmann, F. T., (2010). Groundwater use for irrigation – a global inventory. Hydrol Earth Syst Sci Discuss 7, 3977–4021. doi:10.5194/hessd-7-3977-2010.

    Google Scholar 

  • Strzepek, K., Boehlert, B., (2010). Competition for water for the food system.

    Google Scholar 

  • Taheripour, F., Hertel, T. W., & Liu, J. (2013). The role of irrigation in determining the global land use impacts of biofuels. Energy, Sustainability and Society, 3(1), 1–18.

    Article  Google Scholar 

  • Taheripour, F., Hurt, C., & Tyner, W. E. (2013). Livestock industry in transition: Economic, demographic, and biofuel drivers. Animal Frontiers, 3(2), 38–46. http://doi.org/10.2527/af.2013-0013.

    Article  Google Scholar 

  • Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J.S., Edmunds, M., Konikow, L., Green, T.R., Chen, J., Taniguchi, M., Bierkens, M. F. P., MacDonald, A., Fan, Y., Maxwell, R. M., Yechieli, Y., Gurdak, J. J., Allen, D. M., Shamsudduha, M., Hiscock, K., Yeh, P. J. -F., Holman, I., Treidel, H., (2012). Ground water and climate change. Nat. Clim. Change 3, 322–329. doi:10.1038/nclimate1744.

    Google Scholar 

  • Wada, Y., Wisser, D., Eisner, S., Flörke, M., Gerten, D., Haddeland, I., Hanasaki, N., Masaki, Y., Portmann, F. T., Stacke, T., Tessler, Z., Schewe, J. (2013). Multimodel projections and uncertainties of irrigation water demand under climate change. Geophys. Res. Lett. 40, 4626–4632. doi:10.1002/grl.50686.

    Google Scholar 

  • Wurbs, Ralph A., and Rolando A. Ayala. 2014. “Reservoir Evaporation in Texas, USA.” Journal of Hydrology 510 (March): 1–9. doi:10.1016/j.jhydrol.2013.12.011.

    Google Scholar 

  • Zwart, S. J., Bastiaanssen, W. G. M., de Fraiture, C., & Molden, D. J. (2010). A global benchmark map of water productivity for rainfed and irrigated wheat. Agricultural Water Management, 97(10), 1617–1627. http://doi.org/10.1016/j.agwat.2010.05.018.

    Article  Google Scholar 

Download references

Supplemental learning resources

on this chapter are available for free at https://mygeohub.org/.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hertel, T.W., Baldos, U.L.C. (2016). Water, Food and Environmental Security. In: Global Change and the Challenges of Sustainably Feeding a Growing Planet. Springer, Cham. https://doi.org/10.1007/978-3-319-22662-0_5

Download citation

Publish with us

Policies and ethics