Skip to main content

Abstract

Enhanced crop production is seriously needed to meet the challenges of food security imposed by the rapidly increasing human population around the globe. Unpredictable climatic conditions, depleting water resources and finite arable land limit crop production. Thus the development of new crop varieties with improved yield and resistant to biotic and abiotic stresses will make a vital contribution to food security. Induced mutagenesis has played a pivotal role in ensuring food security by creating 3218 mutant varieties around the world. Mutagenesis combined with advanced molecular biology techniques and in vitro culture methods have resulted in enhanced food production. Mutant germplasm resources have been developed for different crop plants and are freely available to speed up crop improvement programs. These mutant resources are also being used for functional genomics studies, molecular breeding and a greater understanding of the molecular basis of other biological process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T, Ryuto H, Fukunishi N et al (2012) Ion beam radiation mutagenesis. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Oxford, pp 99–106

    Chapter  Google Scholar 

  • AhlALuo WX, Li YS, Wu BM et al (2012) Effects of electron beam radiation on trait mutation in azuki bean (Vigna angularisi). Afr J Biotechnol 11:12939–12950

    Google Scholar 

  • Ahloowalia BS (1997) Improvement of horticultural plants through in vitro culture and induced mutations. In: Altman A, Ziv M (eds) Horticultural biotechnology, in vitro culture and breeding, 3rd International ISHS symposium on in vitro culture and horticultural breeding, Jerusalem, Israel, pp 545–549

    Google Scholar 

  • Ahloowalia BS (1998) In vitro techniques and mutagenesis for the improvement of vegetatively propagated plants. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer, London, pp 293–309

    Chapter  Google Scholar 

  • Ahloowalia BS, Maluszynski M (2001) Induced mutations – a new paradigm in plant breeding. Euphytica 118:167–173

    Article  CAS  Google Scholar 

  • Ahloowalia BS, Maluszynski M, Nichterlein M et al (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204

    Article  Google Scholar 

  • Auerbach C (1940) Tests of carcinogenic substances in relation to the production of mutation in Drosophila melanogaster. Proc R Soc Edinb B 60:164–173

    CAS  Google Scholar 

  • Auerbach C (1947) The induction by mustard gas of chromosomal instabilities in Drosophila melanogaster. Proc R Soc Edinb B 62:307–320

    CAS  Google Scholar 

  • Auerbach C, Robson JM (1944) Production of mutations by allylisothiocyanate. Nature 154:81

    Article  CAS  Google Scholar 

  • Auerbach C, Robson JM (1946) Chemical production of mutations. Nature 157:302

    Article  CAS  PubMed  Google Scholar 

  • Auerbach C, Robson JM (1947) Tests for chemical substances for mutagenic action. Proc R Soc Edinb B 62:284–291

    CAS  Google Scholar 

  • Caldwell DG, McCallum N, Shaw P et al (2004) A structured mutant population for forward and reverse genetics in barley (Hordeum vulgare L.). Plant J 40:143–150

    Article  CAS  PubMed  Google Scholar 

  • Chai M, Ho YW, Liew KW, Asif JM (2004) Biotechnology and in vitro mutagenesis for banana improvement. In: Jain SM, Swennen R (eds) Banana improvement: cellular, molecular biology, and induced mutations. Leuven, Belgium, pp 59–77

    Google Scholar 

  • Chengzhi L (2011) Agronomy in space – China’s crop breeding program. Space Policy 27:157–164

    Article  Google Scholar 

  • Chopra VL (2005) Mutagenesis: investigating the process and processing the outcome for crop improvement. Curr Sci 89:353–359

    CAS  Google Scholar 

  • Chundet R, Cutler RW, Anuntalabhochai S et al (2012) Induction of anthocyanin accumulation in a Thai jasmine rice mutant by low-energy ion beam. IRJPS 3:120–126

    Google Scholar 

  • Cox WJ, Cherney DJR (2001) Influence of brown midrib, leafy, and transgenic hybrids on corn forage production. Agron J 93:790–796

    Article  Google Scholar 

  • De Varies H (1901) Die mutations theorie, Leipzig. (Steite V)

    Google Scholar 

  • FAO (2011) Save and grow – a policy maker’s guide to the sustainable intensification of smallholder crop production. FAO, Rome

    Google Scholar 

  • FAO (2014a) Committee on World Food Security (CFS). http://www.fao.org/cfs/cfshome/en/. Accessed 2 Nov 2014

  • FAO (2014b) Mutant varieties database of the joint FAO/IAEA division of nuclear techniques in food and agriculture. http://mvgs.iaea.org/AboutMutantVarities.aspx. Accessed 2 Nov 2014

  • FAO/IAEA (2014) Mutant variety data base. http://www-naweb.iaea.org/nafa/pbg/index.html. Accessed 5 Nov 2014

  • Feng HY, Yang G, Yu ZL (2009) Mutagenic mechanisms of ion implantation in plants. In: Induced plant mutations in the genomics era. Proceedings of an international joint FAO/IAEA symposium. International Atomic Energy Agency, Vienna, Austria, pp 220–222

    Google Scholar 

  • Gaur PM, Gour VK, Srinivasan S et al (2008) An induced brachytic mutant of chickpea and its possible use in ideotype breeding. Euphytica 159:35–41

    Article  Google Scholar 

  • Greene EA, Codomo CA, Taylor NE, Henikoff JG et al (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164(2):731–740

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gulfishan M, Khan AH, Jafri IF et al (2012) Assessment of mutagenicity induced by MMS and DES in Capsicum annuum L. Saudi J Biol Sci 19:251–255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gulfishan MJ, Afri IF, Khan AH et al (2013) Methyl methane sulphonate induced desynaptic mutants in Capsicum annuum L. Chrom Bot 8:59–62

    Article  Google Scholar 

  • Guo H, Jin W, Zhao L et al (2010) Mutagenic effects of different factors in spaceflight environment of Shijian-8 satellite in wheat. Acta Agron Sin 36:764–770

    Article  Google Scholar 

  • Hallauer AR (2001) Specialty corns, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Hamada K, Inoue M, Tanaka A et al (1999) Potato virus Y-resistant mutation induced by the combination treatment of ion beam exposure and anther culture in Nicotiana tabacum L. Plant Biotechnol J 16:285–289

    Article  CAS  Google Scholar 

  • Haq MA (2009) Development of mutant varieties of crop plants at NIAB and the impact on agricultural production in Pakistan. In: Induced plant mutations in the genomics era. Proceedings of an international joint FAO/IAEA symposium. International Atomic Energy Agency, Vienna, Austria, pp 61–64

    Google Scholar 

  • Hase Y, Okamura M, Takeshita D et al (2010) Efficient induction of flower-color mutants by ion beam irradiation in petunia seedlings treated with high sucrose concentration. Plant Biotechnol J 27:99–103

    Article  CAS  Google Scholar 

  • Henikoff S, Comai L (2003) Single-nucleotide mutations for plant functional genomics. Annu Rev Plant Physiol Plant Mol Biol 54:375–401

    Article  CAS  Google Scholar 

  • Hirano T, Kazama Y, Ohbu S et al (2012) Molecular nature of mutations induced by high-LET irradiation with argon and carbon ions in Arabidopsis thaliana. Mutat Res 735:19–31

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Li Y, Gao Y et al (2010) Review and prospect of space mutation application in pepper breeding. China Veg 24:14–18

    Google Scholar 

  • Jain SM (2001) Tissue culture-derived variation in crop improvement. Euphytica 118:153–166

    Article  CAS  Google Scholar 

  • Jain SM (2002) A review of induction of mutations in fruits of tropical and subtropical regions. Acta Horticult 575:295–302

    Article  Google Scholar 

  • Jain SM (2005) Major mutation-assisted plant breeding programs supported by FAO/IAEA. Plant Cell Tiss Org Cult 82:113–123

    Article  CAS  Google Scholar 

  • Jain SM (2006a) Mutation-assisted breeding for improving ornamental plants. Proc Int Eucarpia Symp Sect Ornamentals Breed Beauty 714:85–98

    Google Scholar 

  • Jain SM (2006b) Mutation-assisted breeding in ornamental plant improvement. Acta Horticult 714:85–98

    Article  Google Scholar 

  • Jain SM (2007) Recent advances in plant tissue culture and mutagenesis. Acta Horticult 736:205–211

    Article  Google Scholar 

  • Jain SM (2010a) In vitro mutagenesis in banana (Musa spp.) improvement. Acta Horticult 879:605–614

    Article  Google Scholar 

  • Jain SM (2010b) Mutagenesis in crop improvement under the climate change. Romania Biotechnol Lett 15(2):88–106

    Google Scholar 

  • Jain SM (2012) In vitro mutagenesis for improving date palm (Phoenix dactylifera L.). Emir J Food Agric 24:400–407

    Google Scholar 

  • Jain SM, Maluszynski M (2004) Induced mutations and biotechnology on improving crops. In: Mujib A, Cho M, Predieri S, Banerjee S (eds) In vitro applications in crop improvement: recent progress. IBH-Oxford, India, pp 169–202

    Google Scholar 

  • Jain SM, Suprasanna P (2011) Induced mutations for enhancing nutrition and food production. Gene Conserv 40:201–215

    Google Scholar 

  • Jambhulkar SJ, Shitre AS (2009) Development and utilization of genetic variability through induced mutagenesis in sunflower (Helianthus annuus L.). In: Induced plant mutations in the genomics era. Proceedings of an international joint FAO/IAEA symposium. International Atomic Energy Agency, Vienna, Austria, pp 104–105

    Google Scholar 

  • Jende-Strid B (1993) Genetic control of flavonoid biosynthesis in barley. Heredity 119:187–204

    Article  CAS  Google Scholar 

  • Jiang SY, Ramachandran Y (2010) Natural and artificial mutants as valuable resources for functional genomics and molecular breeding. Int J Biol Sci 6(3):228–251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kenganal M, Hanchinal RR, Nadaf HL (2008) Ethyl methane sulphonate (EMS) induced mutation and selection for salt tolerance in sugarcane in vitro. Indian J Plant Physiol 13:405–410

    CAS  Google Scholar 

  • Kharkwal MC, Shu QY (2009) The role of induced mutations in world food security. In: Shu QY (ed) Induced plant mutations in the genomics era. FAO, Rome, pp 33–38

    Google Scholar 

  • Kim Y, Schumaker KS, Zhu JK et al (2006) EMS mutagenesis of Arabidopsis. Methods Mol Biol 323:101–103

    CAS  PubMed  Google Scholar 

  • Kondo E, Nakayama M, Kameari N et al (2009) Red-purple flower due to delphinidin 3,5-diglucoside, a novel pigment for Cyclamen spp., generated by ion-beam irradiation. Plant Biotechnol J 26:565–569

    Article  CAS  Google Scholar 

  • Koornneef M, Dellaert LW, Van Der Veen JH et al (1982) EMS-and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana. (L.) Heynh. Mutat Res 93:109–123

    Article  CAS  PubMed  Google Scholar 

  • Kranz AR (1986) Genetic and physiological damage induced by cosmic radiation on dry plant seeds during space flight. Adv Space Res 6:135–138

    Article  CAS  PubMed  Google Scholar 

  • Krieg DR (1963) Ethyl methane sulfonate-induced reversion of bacteriophage T4rII mutants. Genetics 48:561–580

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krishnan A, Guiderdoni E, An G et al (2009) Mutant resources in rice for functional genomics of the grasses. Plant Physiol 149:165–170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Laughnan JR (1953) The effect of the sh2 factor on carbohydrate reserves in the mature endosperm of maize. Genetics 38:485–499

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li JG, Wang PS, Zhang J, Jiang XC (1999) Development and prospect of plant mutation breeding induced by aviation and spaceflight in China. Space Med 12:464–468

    CAS  Google Scholar 

  • Li X, Song Y, Century K et al (2001) A fast neutron deletion mutagenesis-based reverse genetics system for plants. Plant J 27:235–242

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Zhao L, Guo H et al (2007) Current status and perspective outlook of space induced mutation breeding in crop plants. Rev China Agric Sci Technol 9:26–29

    Google Scholar 

  • Matsumura A, Nomizu T, Furutani N et al (2010) Ray florets color and shape mutants induced by 12C5+ ion beam irradiation in chrysanthemum. Sci Hortic 123:558–561

    Article  CAS  Google Scholar 

  • Mba C (2013) Induced mutations unleash the potentials of plant genetic resources for food and agriculture. Agronomie 3:200–231

    Article  Google Scholar 

  • Mba C, Shu QY (2012) Gamma irradiation. In: Shu Q, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Oxfordshire, pp 91–98

    Chapter  Google Scholar 

  • Mba C, Afza R, Jain SM et al (2007) Induced mutations for enhancing salinity tolerance in rice. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding towards drought and salt tolerant crops. Springer, Berlin, pp 413–454

    Chapter  Google Scholar 

  • Mba C, Afza R, Shu QY et al (2012a) Mutagenic radiations: X-rays, ionizing particles and ultraviolet. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Oxfordshire, pp 83–90

    Chapter  Google Scholar 

  • Mba C, Guimaraes PE, Ghosh K (2012b) Re-orienting crop improvement for the changing climatic conditions of the 21st century. Agric Food Sect 1:7

    Article  Google Scholar 

  • Mei M, Deng H, Lu Y et al (1994a) Mutagenic effects of heavy ion radiation in plants. Adv Space Res 14:363–372

    Article  CAS  PubMed  Google Scholar 

  • Mei M, Qiu Y, He Y et al (1994b) Mutational effects of space flight on Zea mays seeds. Adv Space Res 14:33–39

    Article  CAS  PubMed  Google Scholar 

  • Mei MT, Oiu YL, Sun YQ et al (1998) Morphological and molecular changes of maize plant after seeds been flown on recoverable satellite. Adv Space Res 22:1691–1697

    Article  CAS  PubMed  Google Scholar 

  • Morrell PL, Buckler ES, Ross-Ibarra J et al (2012) Crop genomics: advances and applications. Nat Rev Genet 13:85–96

    CAS  Google Scholar 

  • Muller HJ (1927) Artificial transmutation of the gene. Science 66:84

    Article  CAS  PubMed  Google Scholar 

  • Ou XF, Long LK, Wu Y et al (2010) Spaceflight-induced genetic and epigenetic changes in the rice (Oryza sativa L.) genome are independent of each other. Genome 53:524–532

    Article  CAS  PubMed  Google Scholar 

  • Patade VY, Suprasanna P, Bapat VA (2008) Gamma irradiation of embryogenic callus cultures and in vitro selection for salt tolerance in sugarcane (Saccharum officinarum L.). Agric Sci China 7:1147–1152

    Article  CAS  Google Scholar 

  • Predieri S (2001) Mutation induction and tissue culture in improving fruits. Plant Cell Tiss Org Cult 64:185–210

    Article  CAS  Google Scholar 

  • Ren W, Zhang Y, Deng B et al (2010) Effect of space flight factors on alfalfa seeds. Afr J Biotechnol 9:7273–7279

    Google Scholar 

  • Reyes-Borja WO, Sotomayor I, Garzon I et al (2007) Alteration of resistance to black sigatoka (Mycosphaerella fijiensis Morelet) in banana by in vitro irradiation using carbon ion-beam. Plant Biotechnol J 24:349–353

    Article  Google Scholar 

  • Ronald PC (2014) Lab to farm: applying research on plant genetics and genomics to crop improvement. PLoS Biol 12(6):e1001878. doi:10.1371/journal.pbio.1001878

    Article  PubMed Central  PubMed  Google Scholar 

  • Roux NS, Toloza A, Strosse H et al (2009) Induction and selection of potentially useful mutants in banana. Acta Horticult 828:315–322

    Article  Google Scholar 

  • Roychowdhury R, Tah J (2013) Mutagenesis – a potential approach for crop improvement. In: Hakeen KR, Ahmad P, Öztürk O (eds) Crop improvement. Springer, New York, pp 149–187

    Google Scholar 

  • Rutger JN (2006) Thirty years of induction, evaluation, and integration of useful mutants in rice genetics and breeding. Plant Mutat Rep 1(2):4–13

    Google Scholar 

  • Rutger JN (2009) The induced sd-1 mutant and other useful mutant genes in modern rice varieties. In: Shu QY (ed) Induced plant mutations in the genomics era. Proceeding of an international joint FAO/IAEA symposium, Rome, pp 44–47

    Google Scholar 

  • Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc Natl Acad Sci U S A 106:15594–15598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shikazono N, Yokota Y, Kitamura S et al (2003) Mutation rate and novel tt mutants of Arabidopsis thaliana induced by carbon ions. Genetics 163:1449–1455

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sikora P, Chawade A, Larsson M et al (2011) Mutagenesis as a tool in plant genetics, functional genomics, and breeding. Int J Plant Genom. doi:10.1155/2011/314829

  • Somsri S, Putivoranat M, Kanhom P et al (2008) Improvement of tropical and subtropical fruit trees: tangerine, pummelo in Thailand through induced mutation and biotechnology. Acta Horticult 787:127–139

    Article  Google Scholar 

  • Stadler LJ (1928a) Genetic effects of X-rays in maize. Proc Natl Acad Sci U S A 14:69–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stadler LJ (1928b) Mutations in barley induced by X-rays and radium. Science 68:186–187

    Article  CAS  PubMed  Google Scholar 

  • Stephens LC (2009) Ethidium bromide-induced mutations from inflorescence cultures of Indiangrass. Hortic Sci 44:1215–1218

    Google Scholar 

  • Suprasanna P, Patade VY, Vaidya ER, Patil VD (2009) Radiation induced in vitro mutagenesis, selection for salt tolerance and characterization in sugarcane. In: Induced plant mutations in the genomics era. Proceedings of an international joint FAO/IAEA symposium, International Atomic Energy Agency, Vienna, Austria, pp 145–147

    Google Scholar 

  • Suprasanna P, Mirajkar SJ, Patade YV, Jain SM (2014) Induced mutagenesis for improving plant abiotic stress tolerance. In: Tomlekova NB, Kozgar MI, Wani MR (eds) Mutagenesis: exploring genetic diversity of crops. Wageningen Academic Publishers, Netherlands, pp 349–378

    Google Scholar 

  • Takano N, Takahashi Y, Yamamoto M et al (2013) Isolation of a novel UVB-tolerant rice mutant obtained by exposure to carbon-ion beams. J Radiat Res 54:637–648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka A, Shikazono N, Hase Y et al (2010) Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J Radiat Res 51:223–233

    Article  CAS  PubMed  Google Scholar 

  • Tracy WF (1997) History, genetics, and breeding of supersweet (shrunken2) sweet corn. Plant Breed Rev 14:189–236

    Google Scholar 

  • UNEP Global Environment Outlook 3 (2002) Global Environment Outlook 3. United Nations, New York

    Google Scholar 

  • Wang N, Long T, Yao W, Xiong L, Zhang Q, Wu C et al (2013) Mutant resources for the functional analysis of the rice genome. Mol Plant 6:596–604

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Yu Z (2001) Radiobiological effects of a low-energy ion beam on wheat. Radiat Envir Biophys 40:53–57

    Article  CAS  Google Scholar 

  • Wu JL, Wu C, Lei C et al (2005) Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol 59:85–97

    Article  CAS  PubMed  Google Scholar 

  • Wua H, Huang C, Zhang K, Sun Y (2010) Mutations in cauliflower and sprout broccoli grown from seeds flown in space. Adv Space Res 46:1245–1248

    Article  Google Scholar 

  • Xiao W, Yang Q, Chen Z et al (2008) Blast-resistance inheritance of space-induced rice lines and their genomic polymorphism by microsatellite markers. Sci Sin Agric 4:3952–3958

    Google Scholar 

  • Xin Z, Wang ML, Barkley NA et al (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:103. doi:10.1186/1471-2229-8-103

    Article  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi H, Hase Y, Tanaka A et al (2009) Mutagenic effects of ion beam irradiation on rice. Breed Sci 59:169–177

    Article  CAS  Google Scholar 

  • Yuan L, Dou Y, Kianian SF et al (2014) Deletion mutagenesis identifies a haploinsufficient role for g-Zein in opaque2 endosperm modification. Plant Physiol 164:119–130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhong-hua W, Xin-chen Z, Yu-lin J (2014) Development and characterization of rice mutants for functional genomics studies and breeding. Rice Sci 21(4). doi:10.1016/S1672-6308(13)60188-2

  • Zhu BG, Gu AQ, Deng XD et al (1995) Effects of caffeine or EDTA post treatment on EMS mutagenesis in soybean. Mutat Res 334:157–159

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Gulfishan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gulfishan, M., Bhat, T.A., Oves, M. (2015). Mutants as a Genetic Resource for Future Crop Improvement. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools. Springer, Cham. https://doi.org/10.1007/978-3-319-22521-0_4

Download citation

Publish with us

Policies and ethics