Skip to main content

Assessment of the SARISTU Enhanced Adaptive Droop Nose

  • Conference paper
  • First Online:
Smart Intelligent Aircraft Structures (SARISTU)

Abstract

For the application of laminar flow on commercial aircraft wings, the high-lift devices at the leading edge play a major role. Since conventional leading edge devices like slats do not comply with the high surface quality requirements needed for laminar flow, alternative concepts must be developed. Besides the conventional Krueger device that enables laminar flow on the upper side of the airfoil and additionally implicates an insect shielding functionality, smart droop nose devices are currently being investigated. However, the research on such morphing devices that can deform to a given target shape and provide a smooth, high-quality surface has to give answers to questions of fundamental industrial requirements like erosion protection, anti-/de-icing, lightning strike protection, and bird strike protection. The integration of these functionalities into a given baseline design of a morphing structure is a key challenge for the realization of such devices in the future. This paper focuses on the design drivers, system interdependencies, and effects of the integration of the mentioned functionalities into a smart droop nose device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Shapes are generated with the droop nose-shaped generator of Kühn and Wild from [11]. Constant parameter is, for example, the droop in percentage of the local chord length.

Abbreviations

EADN:

Enhance adaptive droop nose

GT:

Ground test

WTT:

Wind tunnel test

BST:

Bird strike test

GFRP:

Glass fiber-reinforced plastic

ε :

Bending strain

Δκ:

Distribution of difference in curvature

t :

Skin thickness distribution

LSP:

Lightning strike protection

AS:

Application scenarios

A/C:

Aircraft

LoD:

Lift over drag

MICADO:

Multidisciplinary Integrated Conceptual Aircraft Design and Optimization

SADE:

Smart High-Lift Devices for Next Generation Wings

LIP/KAP:

Load introduction points

DC:

Drive chain

M:

Axis of rotation

r i :

Interconnected levers → main lever

l i :

Struts to skin/drive chain

K i :

Kinematic point between main lever r and strut l

q :

Offset

p :

Motion direction

αi :

Rotational angle

x c :

Cruise position

x d :

Droop position

References

  1. ACARE, Vision 2020, European Commission

    Google Scholar 

  2. ACARE, Flightpath 2050, European Commission

    Google Scholar 

  3. De Gaspari A, Ricci S (2013) Active camber morphing wings based on compliant structures. In: Proceedings of the 2013 AIDAA conference of the Italian association of aeronautics XXI conference, Naples, Italy, 9–12 Sept 2013

    Google Scholar 

  4. Weber D, Mueller-Roemer J, Simpson J, Adachi S, Herget W, Landersheim V, Laveuve D (2014) Smart droop nose for application to laminar wing of future green regional A/C. Greener Aviation 2014, 12.03.-14.03.2014, Brussels

    Google Scholar 

  5. Thuwis GAA, Abdalla MM, Gürdal Z, Optimization of a variable-stiffness skin for morphing high-lift devices. Smart Mater Struct 19:124010

    Google Scholar 

  6. Wild J, Pott-Pollenske M, Nagel B (2006) An integrated design approach for low noise exposing high-lift devices. 3rd AIAA flow control conference, San Francisco, CA (USA), 5 Jun 2006–8 Jun 2006

    Google Scholar 

  7. Monner HP, Riemenschneider J, Kintscher M (2012) Groundtest of a composite smart droop nose. AIAA/ASMR/ASCE/AHS/ASC 2012, Honolulu, Hawaii, 23–26 Apr 2012. ISBN 10.2514/6.2012-1580

  8. Kintscher M, Monner HP, Kühn T, Wild J, Wiedemann M (2013) Low speed wind tunnel test of a morphing leading edge. In: Proceedings of the 2013 AIDAA conference of the Italian association of aeronautics XXI conference, 9–12 Sept 2013, Naples, Italy

    Google Scholar 

  9. SARISTU, FP7 project-consortium. http://www.saristu.eu

  10. Zimmer H (1979) Quertriebskörper mit veränderbarer Profilierung, insbesondere Flugzeugflügel. German Patent No. DE 2907912-A1

    Google Scholar 

  11. Kühn T, Wild J (2010) Aerodynamic optimization of a two-dimensional two-element high lift airfoil with a smart droop nose device. 1st EASN association workshop on aerostructures, 7 Oct 2010–8 Oct 2010, Paris, France

    Google Scholar 

  12. Schmitz A, Horst P, Rudenko A, Monner HP (2013) Design of a contourvariable droop nose. In: Forschungsbericht 2013-03, TU Braunschweig Braunschweig: Techn. Univ., Campus Forschungsflughafen. Seiten 110-121. ISBN 978-3-928628-63-1

    Google Scholar 

  13. SARISTU 1st Periodic Report Publishable Summary, SARISTU Consortium

    Google Scholar 

  14. Monner HP, Kintscher M, Lorkowski T, Storm S (2009) Design of a smart droop nose as leading edge high lift system for transportation aircraft, AIAA

    Google Scholar 

  15. SADE Newsletter (2012) SADE Consortium. www.sade-project.eu/publications.html

  16. Lorkowski T (2010) Aktuatorsystem für “Morphing Devices”. In: Hochauftriebskonfigurationen, Invited Lecture, DLR Wissenschaftstag, Braunschweig, 30 Sept 2010

    Google Scholar 

  17. Kintscher M, Wiedemann M, Monner HP, Heintze O, Kuehn T (2011) Design of a smart leading edge device for low speed wind tunnel tests in the European project SADE. Int J Struct Integr 2(4). ISSN: 1757-9864, 2011

    Google Scholar 

  18. Monner HP, Riemenschneider J, Kintscher M (2012) Groundtest of a composite smart droop nose. AIAA/ASMR/ASCE/AHS/ASC 2012, Honolulu, Hawaii, 23–26 Apr 2012. ISBN 10.2514/6.2012-1580

  19. Patent (1979) Lift generating body for example an airfoil of adjustable variable cross-sectional shape, DE19792907912, Dornier Werke

    Google Scholar 

  20. Storm S, Kirn J (2015) Towards the industrial application of morphing aircraft wings–development of the actuation kinematics of a droop nose, SMART 2015—7th ECCOMAS thematic conference, S. Miguel, Azores, Portugal, 3–6 June 2015

    Google Scholar 

  21. Grote KH, Feldhusen J (2011) Dubbel, Taschenbuch für den Maschinenbau, 23 Auflage. Springer, Berlin

    Google Scholar 

  22. Wolfgang Kempkens. http://www.ingenieur.de/Fachbereiche/Windenergie/Rotoren-Windraedern-passen-Form-blitzschnell-Wind-an

  23. Kirn J, Storm S (2014) Kinematic solution for a highly adaptive droop nose, ICAST2014: 25th international conference on adaptive structures and technologies, 6–8 Oct 2014, The Hague, The Netherlands

    Google Scholar 

  24. Risse K, Lammering T, Anton E, Franz K, Hoernschemeyer R (2012) An integrated environment for preliminary aircraft design and optimization. Paper presented at the 8th AIAA multidisciplinary design optimization specialist conference, AIAA, Honolulu, HI, submitted for publication

    Google Scholar 

  25. Peter F, Lammering T, Risse K, Franz K, Stumpf E (2013) Economic assessment of morphing leading edge systems in conceptual aircraft design. Paper presented at the AIAA 51st aerospace sciences meeting (ASM), AIAA, Fort Worth

    Google Scholar 

  26. Drela C, A users guide to MSES 3.05. Technical report, MIT Department of Aeronautics and Astronautics

    Google Scholar 

  27. Risse K, Stumpf E (2014) Conceptual aircraft design with hybrid laminar flow control. CEAS Aeronaut J 5:333–343

    Google Scholar 

Download references

Acknowledgments

We would like to thank all participating partners from the FP7 project consortium SARISTU for the good teamwork and the support during the development of the enhanced adaptive leading edge. We especially enjoyed working together in the AS01 team with Invent, VZLU, SONACA, and GKN. The research leading to these results has received funding from the European Union’s Seventh Framework Programme for research, technological development, and demonstration under grant agreement No. 284562.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Kintscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kintscher, M., Kirn, J., Storm, S., Peter, F. (2016). Assessment of the SARISTU Enhanced Adaptive Droop Nose. In: Wölcken, P., Papadopoulos, M. (eds) Smart Intelligent Aircraft Structures (SARISTU). Springer, Cham. https://doi.org/10.1007/978-3-319-22413-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22413-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22412-1

  • Online ISBN: 978-3-319-22413-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics