Skip to main content

Abstract

The spatial median can be defined as the unique minimum of a strictly convex objective function. Hence, its computation through an iterative algorithm ought to be straightforward. The simplest algorithm is the steepest descent Weiszfeld algorithm, as modified by Ostresh and by Vardi and Zhang . Another natural algorithm is Newton-Raphson. Unfortunately, all these algorithms can have problems near data points; indeed, Newton-Raphson can converge to a non-optimal data point, even if a line search is included! However, by combining these algorithms, a reliable and efficient “hybrid” algorithm can be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen, K.D.: An efficient Newton barrier method for minimizing a sum of Euclidean norms. SIAM J. Optim. 6, 74–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Andersen, K.D., Christiansen, E., Conn, A.R., Overton, M.L.: An efficient primal-dual interior-point method for minimizing a sum of Euclidean norms. SIAM J. Sci. Comput. 22, 243–262 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Andrews, D.F., Mallows, C.L.: Scale mixture of normal distributions. J. R. Stat. Soc. Ser. B 36, 99–102 (1974)

    MathSciNet  MATH  Google Scholar 

  • Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2, 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Bedall, F.K., Zimmermann, H.: The mediancentre. Appl. Stat. 28, 325–328 (1979)

    Article  MATH  Google Scholar 

  • Brown, B.M.: Statistical uses of the spatial median. J. R. Stat. Soc. Ser. B 45, 25–30 (1983)

    MathSciNet  MATH  Google Scholar 

  • Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40, 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Dempster, A.P., Laird, N.M., Rubin, D,B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39, 1–38 (1977)

    MathSciNet  Google Scholar 

  • Dempster, A.P., Laird, N.M., Rubin, D.B.: Iteratively reweighted least squares for linear regression when errors are Normal/Independent distributed. In: Krishnaiah, P.R. (ed.) Multivariate Analysis-V, pp. 35–57. North-Holland, Amsterdam (1980)

    Google Scholar 

  • Feller, W.: An Introduction to Probability Theory and its Applications, vol. II. Wiley, New York (1966)

    MATH  Google Scholar 

  • Filzmoser, P., Fritz, H., Kalcher, K.: pcaPP: Robust PCA by Projection Pursuit. R package version 1.9–49 (2013). http://CRAN.R-project.org/package=pcaPP

  • Fritz, H., Filzmoser, P., Croux, C.: A comparison of algorithms for the multivariate L 1 median. Comput. Stat. 27, 393–410 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Gower, J.C.: The mediancentre. Appl. Stat. 23, 466–470 (1974)

    Article  Google Scholar 

  • Haldane, J.B.S.: Note on the median of a multivariate distribution. Biometrika 35, 414–415 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  • Hössjer, O., Croux, C.: Generalizing univariate signed rank statistics for testing and estimating a multivariate location parameter. Nonparametric Stat. 4, 293–308 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Huber, P.J.: Robust Statistics. Wiley, Chichester (1981)

    Book  MATH  Google Scholar 

  • Hunter, D.R., Lange, K.: A tutorial on MM algorithms. Am. Stat. 58, 30–37 (2004)

    Article  MathSciNet  Google Scholar 

  • Kärkkäinen, T., Äyrämö, S. On computation of spatial median for robust data mining. In: Schilling, R., Hasse, W., Periaux, J., Baier, H., Bugeda, G. (eds.) Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems, EUROGEN 2005. FLM, Munich (2005)

    Google Scholar 

  • Kuhn, H.W.: A note on Fermat’s problem. Math. Program. 4, 98–107 (1973)

    Article  MATH  Google Scholar 

  • Lange, K., Hunter, D.R., Yang, I.: Optimization transfer using surrogate objective functions (with discussion). J. Comput. Graph. Stat. 9, 1–59 (2000)

    MathSciNet  Google Scholar 

  • Lange, K., Sinsheimer, J.S.: Normal/Independent distributions and their applications in robust regression. J. Comput. Graph. Stat. 2, 175–198 (1993)

    MathSciNet  Google Scholar 

  • Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284, 193–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Mardia, K.V., Kent, J.T., Bibby, J.M.: Multivariate Analysis. Academic, London (1979)

    MATH  Google Scholar 

  • McLachlan, G., Krishnan, T.: The EM Algorithm and Extensions, 2nd edn. Wiley, Hoboken (2008)

    Book  MATH  Google Scholar 

  • Nordhausen, K., Sirkiä, S., Oja, H., Tyler, D.E.: ICSNP: Tools for Multivariate Nonparametrics. R package version 1.0-9 (2012). http://CRAN.R-project.org/package=ICSNP

  • Oja, H.: Multivariate Nonparametric Methods with R: An Approach Based on Spatial Signs and Ranks. Springer, New York (2010)

    Book  MATH  Google Scholar 

  • Ostresh, L.M.: On the convergence of a class of iterative methods for solving the Weber location problem. Oper. Res. 26, 597–609

    Google Scholar 

  • R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria (2014)

    Google Scholar 

  • Small, C.G.: A survey of multidimensional medians. Int. Stat. Rev. 58, 263–277 (1990)

    Article  Google Scholar 

  • Valkonen, T., Kärkkäinen, T.: Clustering and the perturbed spatial median. Math. Comput. Model. 52, 87–106 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Vardi, Y., Zhang, C.-H.: The multivariate L 1-median and associated data depth. Proc. Natl. Acad. Sci. 97, 1423–1426 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, C.F.J.: On the convergence properties of the EM algorithm. Ann. Stat. 11, 95–103 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Kent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kent, J.T., Er, F., Constable, P.D.L. (2015). Algorithms for the Spatial Median. In: Nordhausen, K., Taskinen, S. (eds) Modern Nonparametric, Robust and Multivariate Methods. Springer, Cham. https://doi.org/10.1007/978-3-319-22404-6_12

Download citation

Publish with us

Policies and ethics