Skip to main content

Classical and Multicenter Bonding in Boron: Two Faces of Boron

  • Chapter
Boron

Abstract

In this chapter we have shown that boron has two faces in chemistry: with classical and multicenter bonding. When neutral boron atoms are involved in bonding, we usually encounter domination of multicenter bonding. Such examples are planar, quasi-planar, and three dimensional pure and doped boron clusters, two-dimensional sheets as well as conventional deltahedral boranes. However, when a boron atom acquires an extra electron, it tends to form molecules similar to those of the neighboring carbon featuring classical 2c-2e σ-bonds instead of multicenter ones. Such examples are BH4 , analog of the CH4 molecule; LinBnH2n+2 molecules containing BnH2n+2 n− kernels, which are isostructural to corresponding molecules in the CnH2n+2 series; Li6B6H6, analog of benzene; linear chain of boron anions in LiBx, analog of carbine; and 2D layer of boron in MgB2 mimicking the graphene structure. Chemistry of boron continues to expand conquering new territories and providing us with unprecedented structures, chemical bonding, internal rotations and other unusual properties. We believe we are at the beginning of new era of boron chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  CAS  Google Scholar 

  3. Tang H, Ismail-Beigi S (2007) Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys Rev Lett 99:115501

    Article  Google Scholar 

  4. Tang H, Ismail-Beigi S (2009) Self-doping in boron sheets from first principles: a route to structural design of metal boride nanostructures. Phys Rev B 80:134113

    Article  Google Scholar 

  5. Yang X, Ding Y, Ni J (2008) Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties. Phys Rev B 77:041402

    Article  Google Scholar 

  6. Galeev TR, Chen Q, Guo J-C, Bai H, Miao C-Q, Lu H-G, Sergeeva AP, Li S-D, Boldyrev AI (2011) Deciphering the mystery of hexagon holes in an all-boron graphene α-sheet. Phys Chem Chem Phys 13:11575–11578

    Article  CAS  Google Scholar 

  7. Galeev TR, Dunnington BD, Schmidt JR, Boldyrev AI (2013) Solid state adaptive natural density partitioning: a tool for deciphering multi-center bonding in periodic systems. Phys Chem Chem Phys 15:5022–5029

    Article  CAS  Google Scholar 

  8. Olson JK, Boldyrev AI (2012) Electronic transmutation: boron acquiring an extra electron becomes ‘carbon’. Chem Phys Lett 523:83–86

    Article  CAS  Google Scholar 

  9. Dilthey WZ (1921) Personal- und Hochschulnachrichten. Angew Chem 34:596

    Google Scholar 

  10. Price WC (1947) The structure of diborane. J Chem Phys 15:614

    Article  CAS  Google Scholar 

  11. Price WC (1948) The absorption spectrum of diborane. J Chem Phys 16:894

    Article  CAS  Google Scholar 

  12. Bell RP, Longuet-Higgins HC (1945) The normal vibrations of bridged X2Y6 molecules. Proc R Soc (London) A 183:357–374

    Article  CAS  Google Scholar 

  13. Hedberg K, Schomaker V (1951) A reinvestigation of the structures of diborane and ethane by electron diffraction. J Am Chem Soc 73:1482–1487

    Article  CAS  Google Scholar 

  14. Lipscomb WN (1963) Boron hydrides. In: Benjamin WA (ed) The physical inorganic chemistry series. Verlag W. A. Benjamin Inc., New York/Amsterdam

    Google Scholar 

  15. Pitzer KS (1945) Electron deficient molecules. I The principles of hydroboron structures. J Am Chem Soc 67:1126–1132

    Article  CAS  Google Scholar 

  16. Eberhardt WH, Crawford B, Lipscomb WN (1954) The valence structure of the boron hydrides. J Chem Phys 22:989–1001

    Article  CAS  Google Scholar 

  17. Albert B, Hillebrecht H (2009) Boron: elementary challenge for experimenters and theoreticians. Angew Chem Int Ed 48:8640–8668

    Article  CAS  Google Scholar 

  18. White MA, Cerqueira AB, Whitman CA, Johnson MB, Ogitsu T (2015) Determination of phase stability of elemental boron. Angew Chem Int Ed 54:3626–3629

    Article  CAS  Google Scholar 

  19. Decker BF, Kasper JS (1959) The crystal structure of a simple rhombohedral form of boron. Acta Crystallogr 12:503–506

    Article  CAS  Google Scholar 

  20. Hoard JL, Sullenger DB, Kennard CHL, Hughes RE (1970) The structure analysis of β-rhombohedral boron. J Solid State Chem 1:268–277

    Article  CAS  Google Scholar 

  21. Oganov AR, Chen J, Gatti C, Ma YZ, Ma YM, Glass CW, Liu Z, Yu T, Kurakevych OO, Solozhenko VL (2009) Ionic high-pressure form of elemental boron. Nature 457:863–867

    Article  CAS  Google Scholar 

  22. (a) Popov IA, Piazza ZA, Li W-L, Wang LS, Boldyrev AI (2013) A combined photoelectron spectroscopy and ab initio study of the quasi-planar B24 cluster. J Chem Phys 139:144307; (b) Piazza ZA, Popov IA, Li W-L, Pal R, Zeng XC, Boldyrev AI, Wang LS (2014) A photoelectron spectroscopy and ab initio study of the structures and chemical bonding of the B25 cluster. J Chem Phys 141:034303

    Google Scholar 

  23. Alexandrova AN, Boldyrev AI, Zhai H-J, Wang LS (2006) All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coord Chem Rev 250:2811–2866

    Google Scholar 

  24. Sergeeva AP, Popov IA, Piazza ZA, Li W-L, Romanescu C, Wang LS, Boldyrev AI (2014) Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. Acc Chem Res 47:1349–1358

    Google Scholar 

  25. Zhai H-J, Alexandrova AN, Birch KA, Boldyrev AI, Wang LS (2003) Hepta- and octacoordinated boron in molecular wheels of eight- and nine-atom boron clusters: observation and confirmation. Angew Chem Int Ed 42:6004–6008

    Google Scholar 

  26. Zubarev DY, Boldyrev AI (2008) Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys Chem Chem Phys 10:5207–5217

    Article  CAS  Google Scholar 

  27. Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  28. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  29. Hotop H, Lineberger WC (1985) Binding energies in atomic negative ions. J Phys Chem Ref Data 14:731–750

    Article  CAS  Google Scholar 

  30. Fowler PW, Gray BR (2007) Induced currents and electron counting in aromatic boron wheels: B8 2− and B9 . Inorg Chem 46:2892–2897

    Article  CAS  Google Scholar 

  31. Romanescu C, Galeev TR, Li WL, Boldyrev AI, Wang LS (2011) Aromatic metal-centered monocyclic boron rings: Co©B8 and Ru©B9 . Angew Chem Int Ed 50:9334–9337

    Google Scholar 

  32. Li WL, Romanescu C, Galeev TR, Piazza ZA, Boldyrev AI, Wang LS (2012) Transition-metal-centered nine-membered boron rings: M©B9 and M©B9 . (M = Rh, Ir). J Am Chem Soc 134:165–168

    Google Scholar 

  33. Romanescu C, Galeev TR, Sergeeva AP, Li WL, Wang LS, Boldyrev AI (2012) Experimental and computational evidence of octa- and nona-coordinated planar iron-doped boron clusters: Fe©B8 and Fe©B9 . J Organomet Chem 721–722:148–154

    Google Scholar 

  34. Galeev TR, Romanescu C, Li WL, Wang LS, Boldyrev AI (2012) Observation of the highest coordination number in planar species: decacoordinated Ta©B10 and Nb©B10 anions. Angew Chem Int Ed 51:2101–2105

    Google Scholar 

  35. Romanescu C, Galeev TR, Li WL, Boldyrev AI, Wang LS (2013) Transition-metal-centered monocyclic boron wheel clusters (M©Bn): a new class of aromatic borometallic compounds. Acc Chem Res 46:350–358

    Article  CAS  Google Scholar 

  36. Oliva JM, Vegas Á (2012) Merging boron solid state and molecular chemistry: energy landscapes in the exo/endo closo-borane complex Sc[B24H24]+. Chem Phys Lett 533:50–55

    Article  CAS  Google Scholar 

  37. Forkwa BPT, Hermus M (2012) All-boron planar B6 ring in the solid-state phase Ti7Rh4Ir2B8. Angew Chem Int Ed 51:1702–1705

    Article  Google Scholar 

  38. Mbarki M, Touzani RS, Fokwa BPT (2014) Unexpected synergy between magnetic iron chains and stacked B6 rings in Nb6Fe1−xIr6+xB8. Angew Chem Int Ed 53:13174–13177

    Article  CAS  Google Scholar 

  39. Jimenez-Halla JOC, Islas R, Heine T, Merino G (2010) B19 : an aromatic Wankel motor. Angew Chem Int Ed 49:5668–5671

    Article  CAS  Google Scholar 

  40. Martínez-Guajardo G, Sergeeva AP, Boldyrev AI, Heine T, Ugalde JM, Merino G (2011) Unravelling phenomenon of internal rotation in B13 + through chemical bonding analysis. Chem Comm 47:6242–6244

    Article  Google Scholar 

  41. Zhang J, Sergeeva AP, Sparta M, Alexandrova AN (2012) B13 +: a photodriven molecular Wankel engine. Angew Chem Int Ed 51:8512–8515

    Article  CAS  Google Scholar 

  42. (a) Huang W, Sergeeva AP, Zhai HJ, Averkiev BB, Wang LS, Boldyrev AI (2010) A concentric planar doubly π-aromatic B19 cluster. Nature Chem 2:202–206; (b) Popov IA, Boldyrev AI (2012) Chemical bonding in coronene, isocoronene, and circumcoronene. Eur J Org Chem 2012:3485–3491

    Google Scholar 

  43. Gu FL, Yang X, Tang AC, Jiao H, Schleyer PR (1998) Structure and stability of B13 + clusters. J Comput Chem 19:203–214

    Article  CAS  Google Scholar 

  44. Moreno D, Pan S, Zeonjuk LL, Islas R, Osorio E, Martinez-Guajardo G, Chattaraj P, Heine T, Merino G (2014) B18 2−: a quasi-planar bowl member of the Wankel motor family. Chem Comm 50:8140–8143

    Article  CAS  Google Scholar 

  45. Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  46. Szwacki NG, Sadrzadeh A, Yakobson BI (2007) B80 fullerene: an ab initio prediction of geometry, stability, and electronic structure. Phys Rev Lett 98:166804; (2008) erratum 100:159901

    Article  Google Scholar 

  47. Yan QB, Sheng X-L, Zheng Q-R, Zhang L-Z, Su G (2008) Family of boron fullerenes: general constructing schemes, electron counting rule, and ab initio calculations. Phys Rev B 78:201401

    Article  Google Scholar 

  48. Zope RR, Baruah T, Lau KC, Liu AY, Pederson MR, Dunlap BI (2009) Boron fullerenes: from B80 to hole doped boron sheets. Phys Rev B 79:161403

    Article  Google Scholar 

  49. Sheng XL, Yan QB, Zheng QR, Su G (2009) Boron fullerenes B(32 + 8 k) with four-membered rings and B32 solid phases: geometrical structures and electronic properties. Phys Chem Chem Phys 11:9696–9702

    Article  CAS  Google Scholar 

  50. Özdoğan C, Mukhopadhyay S, Hayami W, Güvenc ZB, Pandey R, Boustani I (2010) The unusually stable B100 fullerene, structural transitions in boron nanostructures, and a comparative study of α- and γ-boron and sheets. J Phys Chem C 114:4362–4375

    Article  Google Scholar 

  51. Wang L, Zhao J, Li F, Chen Z (2010) Boron fullerenes with 32–56 atoms: irregular cage configurations and electronic properties. Chem Phys Lett 501:16–19

    Article  CAS  Google Scholar 

  52. Muya JT, Gopakumar G, Nguyen MT, Ceulemans A (2011) The leapfrog principle for boron fullerenes: a theoretical study of structures and stability of B112. Phys Chem Chem Phys 13:7524–7533

    Article  CAS  Google Scholar 

  53. Zope RR, Baruah T (2011) Snub boron nanostructures: chiral fullerenes, nanotubes and planar sheet. Chem Phys Lett 501:193–196

    Article  CAS  Google Scholar 

  54. Polad S, Ozay M (2013) A new hole density as a stability measure for boron fullerenes. Phys Chem Chem Phys 15:19819–19824

    Article  CAS  Google Scholar 

  55. Prasad DLVK, Jemmis ED (2008) Stuffing improves the stability of fullerene-like boron clusters. Phys Rev Lett 100:165504

    Article  Google Scholar 

  56. De S, Willand A, Amsler M, Pochet P, Genovese L, Goedecker S (2011) Energy landscape of fullerene materials: a comparison of boron to boron nitride and carbon. Phys Rev Lett 106:225502

    Article  Google Scholar 

  57. Li F, Jin P, Jiang D, Wang L, Zhang SB, Zhao J, Chen Z (2012) B80 and B101–103 clusters: remarkable stability of the core–shell structures established by validated density functional. J Chem Phys 136:074302

    Article  Google Scholar 

  58. Boulanger P, Moriniere M, Genovese L, Pochet P (2013) Selecting boron fullerenes by cage-doping mechanisms. J Chem Phys 138:184302

    Article  Google Scholar 

  59. Zhai H-J, Zhao Y-F, Li W-L, Chen Q, Bai H, Hu H-S, Piazza ZA, Tian W-J, Lu H-G, Wu Y-B, Mu Y-W, Wei G-F, Liu Z-P, Li J, Li S-D, Wang L-S (2014) Observation of an all-boron fullerene. Nat Chem 6:727–731

    CAS  Google Scholar 

  60. Chen Q, Li W-L, Zhao Y-F, Zhang S-Y, Hu H-S, Bai H, Li H-R, Tian W-J, Lu H-G, Zhai H-J, Li S-D, Li J, Wang L-S (2015) Experimental and theoretical evidence of an axially chiral borospherene. ACS Nano 9:754–760

    Article  Google Scholar 

  61. Osorio E, Olson JK, Tiznado W, Boldyrev AI (2012) Analysis of why boron avoids sp2 hybridization and classical structures in the BnHn+2 series. Chem Eur J 18:9677–9681

    Article  CAS  Google Scholar 

  62. Dávalos JZ, González J, Guerrero A, Hnyk D, Holub J, Oliva JM (2013) Anionic oligomerization of Li2[B12H12] and Li[CB11H12]: an experimental and computational study. J Phys Chem C 117:1495–1501

    Article  Google Scholar 

  63. Oliva JM, Fernández-Barbero A, Serrano-Andrés L, Canle-L M, Santaballa JA, Fernández MI (2010) Energy landscapes in diexo and exo/endo isomers derived from Li2B12H12. Chem Phys Lett 497:172–177

    Article  CAS  Google Scholar 

  64. Her J-H, Yousufuddin M, Zhou W, Jalisatgi SS, Kulleck JG, Zan JA, Hwang S-J, Bowman RC Jr, Udovic TJ (2008) Crystal structure of Li2B12H12: a possible intermediate species in the decomposition of LiBH4. Inorg Chem 47:9757–9759

    Article  CAS  Google Scholar 

  65. Popov IA, Boldyrev AI (2013) Computational probing of all-boron Li2nB2nH2n+2 polyenes. Comp Theor Chem 1004:5–11

    Google Scholar 

  66. Alexandrova AN, Birch KA, Boldyrev AI (2003) Flattening the B6H6 2− Octahedron. Ab initio prediction of the new family of planar all-boron aromatic molecules. J Am Chem Soc 125:10786–10787

    Article  CAS  Google Scholar 

  67. Gish JT, Popov IA, Boldyrev AI (2015) Homocatenation of aluminum: alkane-like structures of Li2Al2H6 and Li3Al3H8. Chem Eur J. 21:5307-5310.

    Google Scholar 

  68. Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J (2001) Superconductivity at 39 K in magnesium diboride. Nature 410:63–64

    Article  CAS  Google Scholar 

  69. Popov IA, Bozhenko KV, Boldyrev AI (2012) Is graphene aromatic? Nano Res 5:117–123

    Article  CAS  Google Scholar 

  70. Wörle M, Nesper R (2000) Infinite, linear, unbranched borynide chains in LiBx – isoelectronic to polyyne and polycumulene. Angew Chem Int Ed 39:2349–2353

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander I. Boldyrev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Popov, I.A., Boldyrev, A.I. (2015). Classical and Multicenter Bonding in Boron: Two Faces of Boron. In: Hnyk, D., McKee, M. (eds) Boron. Challenges and Advances in Computational Chemistry and Physics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-22282-0_1

Download citation

Publish with us

Policies and ethics