Skip to main content

Functional Imaging of the Prenatal Brain

  • Chapter
Fetal Development

Abstract

In utero magnetic resonance imaging (MRI) has significantly increased our knowledge on early fetal brain development. Especially the possibility to expand standard clinical applications of imaging structure to functional imaging has increased the opportunities but also introduced major challenges in the field regarding motion artifacts, group analysis, and generating structural templates. This chapter gives an overview on fetal functional imaging from stimulation to resting-state studies and discusses critical challenges in data analysis. Fetal functional MRI is a powerful approach investigating brain development in utero and has the potential of generating biomarkers for developmental prognosis in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37(1), 90–101. doi:10.1016/j.neuroimage.2007.04.042.

    Article  PubMed  PubMed Central  Google Scholar 

  • Biswal, B. B. (2012). Resting state fMRI: A personal history. NeuroImage, 62(2), 938–944. doi:10.1016/j.neuroimage.2012.01.090.

    Article  PubMed  Google Scholar 

  • Brewerton, L. J., Chari, R. S., Liang, Y., & Bhargava, R. (2005). Fetal lung-to-liver signal intensity ratio at MR imaging: Development of a normal scale and possible role in predicting pulmonary hypoplasia in utero. Radiology, 235(3), 1005–1010.

    Article  PubMed  Google Scholar 

  • Brugger, P. C., Stuhr, F., Lindner, C., & Prayer, D. (2006). Methods of fetal MR: Beyond T2-weighted imaging. European Journal of Radiology, 57(2), 172–181.

    Article  PubMed  Google Scholar 

  • Chen, Q., & Levine, D. (2001). Fast fetal magnetic resonance imaging techniques. Topics in Magnetic Resonance Imaging, 12(1), 67–79.

    Article  PubMed  Google Scholar 

  • De Vries, J. I. P., Visser, G. H. A., & Prechtl, H. F. R. (1982). The emergence of fetal behaviour. I. Qualitative aspects. Early Human Development, 7(4), 301–322. doi:10.1016/0378-3782(82)90033-0.

    Article  PubMed  Google Scholar 

  • Derntl, B., Krajnik, J., Kollndorfer, K., Bijak, M., Nemec, U., Leithner, K., …, Schöpf, V. (2015). Stress matters! Psychophysiological and emotional loadings of pregnant women undergoing fetal magnetic resonance imaging. BMC Pregnancy and Childbirth, 15, 25.

    Google Scholar 

  • Dittrich, E., Kasprian, G., Prayer, D., & Langs, G. (2011). Atlas learning in fetal brain development. Topics in Magnetic Resonance Imaging, 22(3), 107–111.

    Article  PubMed  Google Scholar 

  • Dittrich, E., Riklin Raviv, T., Kasprian, G., Donner, R., Brugger, P. C., Prayer, D., et al. (2014). A spatio-temporal latent atlas for semi-supervised learning of fetal brain segmentations and morphological age estimation. Medical Image Analysis, 18(1), 9–21. doi:10.1016/j.media.2013.08.004.

    Article  PubMed  Google Scholar 

  • Evans, A. C., Collins, D. L., Mills, S. R., Brown, E. D., Kelly, R. L., & Peters, T. M. (1993). 3D statistical neuroanatomical models from 305 MRI volumes. In 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference (pp. 1813–1817). IEEE. doi:10.1109/NSSMIC.1993.373602.

    Google Scholar 

  • Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., …, Dale, A. M. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355.

    Google Scholar 

  • Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., & Turner, R. (1996). Movement-related effects in fMRI time-series. Magnetic Resonance in Medicine, 35(3), 346–355.

    Article  PubMed  Google Scholar 

  • Fulford, J., Vadeyar, S. H., Dodampahala, S. H., Moore, R. J., Young, P., Baker, P. N., …, Gowland, P. A. (2003). Fetal brain activity in response to a visual stimulus. Human Brain Mapping, 20(4), 239–245.

    Google Scholar 

  • Fulford, J., Vadeyar, S. H., Dodampahala, S. H., Ong, S., Moore, R. J., Baker, P. N., …, Gowland, P. (2004). Fetal brain activity and hemodynamic response to a vibroacoustic stimulus. Human Brain Mapping, 22(2), 116–121.

    Google Scholar 

  • Glover, P., Hykin, J., Gowland, P., Wright, J., Johnson, I., & Mansfield, P. (1995). An assessment of the intrauterine sound intensity level during obstetric echo-planar magnetic resonance imaging. British Journal of Radiology, 68(814), 1090–1094.

    Article  PubMed  Google Scholar 

  • Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L., et al. (2011). Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in python. Frontiers in Neuroinformatics, 5, 13. doi:10.3389/fninf.2011.00013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Habas, P. A., Kim, K., Corbett-Detig, J. M., Rousseau, F., Glenn, O. A., Barkovich, A. J., et al. (2010). A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation. NeuroImage, 53(2), 460–470. doi:10.1016/j.neuroimage.2010.06.054.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hykin, J., Moore, R., Duncan, K., Clare, S., Baker, P., Johnson, I., …, Gowland, P. (1999). Fetal brain activity demonstrated by functional magnetic resonance imaging. Lancet, 354(9179), 645–646.

    Google Scholar 

  • Jardri, R., Houfflin-Debarge, V., Delion, P., Pruvo, J.-P., Thomas, P., & Pins, D. (2012). Assessing fetal response to maternal speech using a noninvasive functional brain imaging technique. International Journal of Developmental Neuroscience, 30(2), 159–161. doi:10.1016/j.ijdevneu.2011.11.002.

    Article  PubMed  Google Scholar 

  • Jardri, R., Pins, D., Houfflin-Debarge, V., Chaffiotte, C., Rocourt, N., Pruvo, J.-P., …, Thomas, P. (2008). Fetal cortical activation to sound at 33 weeks of gestation: A functional MRI study. Neuroimage, 42(1), 10–18.

    Google Scholar 

  • Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2), 825–841.

    Article  PubMed  Google Scholar 

  • Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., & Smith, S. M. (2012). FSL. NeuroImage, 62(2), 782–790. doi:10.1016/j.neuroimage.2011.09.015.

    Article  PubMed  Google Scholar 

  • Kanal, E., Gillen, J., Evans, J. A., Savitz, D. A., & Shellock, F. G. (1993). Survey of reproductive health among female MR workers. Radiology, 187(2), 395–399.

    Article  PubMed  Google Scholar 

  • Kim, K., Habas, P. A., Rousseau, F., Glenn, O. A., Barkovich, A. J., & Studholme, C. (2010). Intersection based motion correction of multislice MRI for 3-D in utero fetal brain image formation. IEEE Transactions on Medical Imaging, 29(1), 146–158. doi:10.1109/TMI.2009.2030679.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kok, R. D., de Vries, M. M., Heerschap, A., & van den Berg, P. P. (2004). Absence of harmful effects of magnetic resonance exposure at 1.5 T in utero during the third trimester of pregnancy: A follow-up study. Magnetic Resonance Imaging, 22(6), 851–854.

    Article  PubMed  Google Scholar 

  • Krüger, G., & Glover, G. H. (2001). Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magnetic Resonance in Medicine, 46(4), 631–637.

    Article  PubMed  Google Scholar 

  • Kuklisova-Murgasova, M., Aljabar, P., Srinivasan, L., Counsell, S. J., Doria, V., Serag, A., …, Rueckert, D. (2011). A dynamic 4D probabilistic atlas of the developing brain. NeuroImage, 54(4), 2750–2763. doi:10.1016/j.neuroimage.2010.10.019.

    Google Scholar 

  • Lan, L. M., Yamashita, Y., Tang, Y., Sugahara, T., Takahashi, M., Ohba, T., et al. (2000). Normal fetal brain development: MR imaging with a half-Fourier rapid acquisition with relaxation enhancement sequence. Radiology, 215(1), 205–210.

    Article  PubMed  Google Scholar 

  • Lowe, M. J. (2012). The emergence of doing “nothing” as a viable paradigm design. NeuroImage, 62(2), 1146–1151. doi:10.1016/j.neuroimage.2012.01.014.

    Article  PubMed  Google Scholar 

  • Mailath-Pokorny, M., Kasprian, G., Mitter, C., Schöpf, V., Nemec, U., & Prayer, D. (2012). Magnetic resonance methods in fetal neurology. Seminars in Fetal & Neonatal Medicine, 17(5), 278–284. doi:10.1016/j.siny.2012.06.002.

    Article  Google Scholar 

  • Moore, R. J., Vadeyar, S., Fulford, J., Tyler, D. J., Gribben, C., Baker, P. N., …, Gowland, P. A. (2001). Antenatal determination of fetal brain activity in response to an acoustic stimulus using functional magnetic resonance imaging. Human Brain Mapping, 12(2), 94–99.

    Google Scholar 

  • Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 87(24), 9868–9872.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogawa, S., Tank, D. W., & Menon, R. (1992). Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping resonance imaging. Proceedings of the National Academy of Sciences, 89, 5951–5955.

    Article  Google Scholar 

  • Raichle, M. E., & Snyder, A. Z. (2007). A default mode of brain function: A brief history of an evolving idea. NeuroImage, 37(4), 1083–1090. doi:10.1016/j.neuroimage.2007.02.041. discussion 1097–9.

    Article  PubMed  Google Scholar 

  • Riklin-Raviv, T., Van Leemput, K., Menze, B. H., Wells, W. M., & Golland, P. (2010). Segmentation of image ensembles via latent atlases. Medical Image Analysis, 14(5), 654–665. doi:10.1016/j.media.2010.05.004.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roche, A. (2011). A four-dimensional registration algorithm with application to joint correction of motion and slice timing in fMRI. IEEE Transactions on Medical Imaging, 30(8), 1546–1554. doi:10.1109/TMI.2011.2131152.

    Article  PubMed  Google Scholar 

  • Rosazza, C., Minati, L., Ghielmetti, F., Mandelli, M. L., & Bruzzone, M. G. (2012). Functional connectivity during resting-state functional MR imaging: Study of the correspondence between independent component analysis and region-of-interest-based methods. AJNR. American Journal of Neuroradiology, 33(1), 180–187. doi:10.3174/ajnr.A2733.

    Article  PubMed  Google Scholar 

  • Rousseau, F., Oubel, E., Pontabry, J., Schweitzer, M., Studholme, C., Koob, M., et al. (2013). BTK: An open-source toolkit for fetal brain MR image processing. Computer Methods and Programs in Biomedicine, 109(1), 65–73. doi:10.1016/j.cmpb.2012.08.007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salimi-Khorshidi, G., Douaud, G., Beckmann, C. F., Glasser, M. F., Griffanti, L., & Smith, S. M. (2014). Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers. NeuroImage, 90, 449–468. doi:10.1016/j.neuroimage.2013.11.046.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schöpf, V., Dittrich, E., Berger-Kulemann, V., Kasprian, G., Kollndorfer, K., & Prayer, D. (2013). Advanced MRI techniques of the fetal brain. Der Radiologe, 53(2), 136–140. doi:10.1007/s00117-012-2401-5.

    Article  PubMed  Google Scholar 

  • Schöpf, V., Kasprian, G., Brugger, P., & Prayer, D. (2012). Watching the fetal brain at “rest”. International Journal of Developmental Neuroscience, 30(1), 11–17.

    Article  PubMed  Google Scholar 

  • Schöpf, V., Kasprian, G., Schwindt, J., Kollndorfer, K., & Prayer, D. (2012). Visualization of resting-state networks in utero. Ultrasound in Obstetrics and Gynecology, 39, 487–488.

    Article  PubMed  Google Scholar 

  • Schwartz, J. L., & Crooks, L. E. (1982). NMR imaging produces no observable mutations or cytotoxicity in mammalian cells. AJR. American Journal of Roentgenology, 139(3), 583–585.

    Article  PubMed  Google Scholar 

  • Serag, A., Aljabar, P., Ball, G., Counsell, S., Boardman, J., Hajnal, J., & Rueckert, D. (2010). Developmental signal intensity changes in subcortical structures of the perinatal brain detected using multi-modal MRI. In MICCAI 2010 Workshop STIA’10 (pp. 1–8).

    Google Scholar 

  • Seshamani, S., Fogtmann, M., Cheng, X., Thomason, M., Gatenby, C., & Studholme, C. (2013). Cascaded slice to volume registration for moving fetal FMRI. In 2013 IEEE 10th International Symposium on Biomedical Imaging (pp. 796–799). IEEE. doi:10.1109/ISBI.2013.6556595.

    Google Scholar 

  • Shellock, F. G., & Crues, J. V. (2004). MR procedures: Biologic effects, safety, and patient care. Radiology, 232(3), 635–652. doi:10.1148/radiol.2323030830.

    Article  PubMed  Google Scholar 

  • Shellock, F. G., & Kanal, E. (1991). Policies, guidelines, and recommendations for MR imaging safety and patient management. SMRI Safety Committee. Journal of Magnetic Resonance Imaging, 1(1), 97–101.

    Article  PubMed  Google Scholar 

  • Smith, F. W., Adam, A. H., & Phillips, W. D. (1983). NMR imaging in pregnancy. Lancet, 1(8314-5), 61–62.

    Article  PubMed  Google Scholar 

  • Snyder, A. Z., & Raichle, M. E. (2012). A brief history of the resting state: The Washington University perspective. NeuroImage, 62(2), 902–910. doi:10.1016/j.neuroimage.2012.01.044.

    Article  PubMed  PubMed Central  Google Scholar 

  • Supino, R., Bottone, M. G., Pellicciari, C., Caserini, C., Bottiroli, G., Belleri, M., et al. (2001). Sinusoidal 50 Hz magnetic fields do not affect structural morphology and proliferation of human cells in vitro. Histology and Histopathology, 16, 719–726.

    PubMed  Google Scholar 

  • Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic Atlas of the human brain: 3-D proportional system: An approach to cerebral imaging. Stuttgart: Thieme Publishers.

    Google Scholar 

  • Thomason, M. E., Dassanayake, M. T., Shen, S., Katkuri, Y., Alexis, M., Anderson, A. L., …, Romero, R. (2013). Cross-hemispheric functional connectivity in the human fetal brain. Science Translational Medicine, 5(173), 173ra24–173ra24. doi:10.1126/scitranslmed.3004978.

    Google Scholar 

  • Yamashita, Y., Namimoto, T., Abe, Y., Takahashi, M., Iwamasa, J., Miyazaki, K., et al. (1997). MR imaging of the fetus by a HASTE sequence. AJR. American Journal of Roentgenology, 168(2), 513–519.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronika Schöpf DI .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schöpf, V., Langs, G., Jakab, A. (2016). Functional Imaging of the Prenatal Brain. In: Reissland, N., Kisilevsky, B. (eds) Fetal Development. Springer, Cham. https://doi.org/10.1007/978-3-319-22023-9_21

Download citation

Publish with us

Policies and ethics