Skip to main content

Neuroregeneration: Disease Modeling and Therapeutic Strategies for Alzheimer’s and Parkinson’s Diseases

  • Chapter
  • First Online:
Biomedical Engineering: Frontier Research and Converging Technologies

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 9))

Abstract

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the two most common neurodegenerative diseases accounting for approximately more than 40 million patients worldwide. Progress in the fundamental understanding and effective therapy of these diseases has been hindered by the failure of currently FDA-approved pharmacological agents and the lack of research models that properly recapitulate disease pathology. One promising approach for the treatment of these diseases is regenerative medicine and its associated technologies. The rise of stem cells technology, cellular replacement, gene therapy, and immunomodulation together present an opportunity for novel combination approaches for AD and PD treatment. Additionally, fundamental studies of human-derived cellular environments may enable truly personalized medicine. In this Chapter, we review these technologies for disease modeling and therapeutic intervention in AD and PD and discuss current challenges associated with their clinical translations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thies, W., Bleiler, L.: 2013 Alzheimer’s disease facts and figures. Alzheimers Dement 9, 208–245 (2013). doi:10.1016/j.jalz.2013.02.003

    Google Scholar 

  2. Whitehouse, P.J., Price, D.L., Struble, R.G., et al.: Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215, 1237–1239 (1982). doi:10.1126/science.7058341

    Google Scholar 

  3. Blennow, K., de Leon, M.J., Zetterberg, H.: Alzheimer’s disease. Lancet 368, 387–403 (2006). doi:10.1016/S0140-6736(06)69113-7

    Google Scholar 

  4. Goedert, M., Spillantini, M.G.: A Century of Alzheimer’s Disease. Science 314(80), 777–781 (2006)

    Google Scholar 

  5. Masters, C.L., Simms, G., Weinman, N.A., et al.: Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA 82, 4245–4249 (1985). doi:10.1073/pnas.82.12.4245

    Google Scholar 

  6. Goate, A., Chartier-Harlin, M.C., Mullan, M., et al.: Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349, 704–706 (1991). doi:10.1038/349704a0

    Google Scholar 

  7. Mullan, M., Crawford, F., Axelman, K., et al.: A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of beta-amyloid. Nat. Genet. 1, 345–347 (1992). doi:10.1038/ng0892-345

    Google Scholar 

  8. Hardy, J.: Framing beta-amyloid. Nat. Genet. 1, 233–234 (1992). doi:10.1038/ng0792-233

    Google Scholar 

  9. Hardy, J.A., Higgins, G.A.: Alzheimer’s disease: the amyloid cascade hypothesis. Science 256, 184–185 (1992). doi:10.1126/science.1566067

    Google Scholar 

  10. Brown, M.S., Ye, J., Rawson, R.B., Goldstein, J.L.: Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391–398 (2000). doi:10.1016/S0092-8674(00)80675-3

    Google Scholar 

  11. Haass, C., Selkoe, D.J.: Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112 (2007). doi:10.1038/nrm2101

    Google Scholar 

  12. Palop, J.J., Mucke, L.: Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat. Neurosci. 13, 812–818 (2010). doi:10.1038/nn.2583

    Google Scholar 

  13. Paoletti, P., Bellone, C., Zhou, Q.: NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 14, 383–400 (2013). doi:10.1038/nrn3504

    Google Scholar 

  14. Li, S., Hong, S., Shepardson, N.E., et al.: Soluble Oligomers of Amyloid β Protein Facilitate Hippocampal Long-Term Depression by Disrupting Neuronal Glutamate Uptake. Neuron 62, 788–801 (2009). doi:10.1016/j.neuron.2009.05.012

    Google Scholar 

  15. Shankar, G.M., Li, S., Mehta, T.H., et al.: Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat. Med. 14, 837–842 (2008). doi:10.1038/nm1782

    Google Scholar 

  16. Hardy, J., Selkoe, D.J.: The Amyloid Hypothesis of Alzheimer’s Disease: Progress and Problems on the Road to Therapeutics. Science 297(80) (2002)

    Google Scholar 

  17. Karran, E., Mercken, M., De Strooper, B.: The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug. Discov. 10, 698–712 (2011). doi:10.1038/nrd3505

    Google Scholar 

  18. Cohen, T.J., Guo, J.L., Hurtado, D.E., et al.: The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat. Commun. 2, 252 (2011). doi:10.1038/ncomms1255

    Google Scholar 

  19. Martin, L., Latypova, X., Terro, F.: Post-translational modifications of tau protein: Implications for Alzheimer’s disease. Neurochem. Int. 58, 458–471 (2011). doi:10.1016/j.neuint.2010.12.023

    Google Scholar 

  20. Ittner, L.M., Ke, Y.D., Delerue, F., et al.: Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142, 387–397 (2010). doi:10.1016/j.cell.2010.06.036

    Google Scholar 

  21. Morris, M., Maeda, S., Vossel, K., Mucke, L.: The Many Faces of Tau. Neuron 70, 410–426 (2011). doi:10.1016/j.neuron.2011.04.009

    Google Scholar 

  22. Lee, V.M., Goedert, M., Trojanowski, J.Q.: Neurodegenerative Tauopathies. Annu. Rev. Neurosci. 24, 1121–1159 (2001). doi:10.1146/annurev.neuro.24.1.1121

    Google Scholar 

  23. Gamblin, T.C., Chen, F., Zambrano, A., et al.: Caspase cleavage in tau: Linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc. Natl. Acad. Sci. 100 (2003)

    Google Scholar 

  24. Roberson, E.D., Halabisky, B., Yoo, J.W., et al.: Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer’s disease. J. Neurosci. 31, 700–711 (2011). doi:10.1523/JNEUROSCI.4152-10.2011

    Google Scholar 

  25. Lee, G., Thangavel, R., Sharma, V.M., et al.: Phosphorylation of tau by fyn: implications for Alzheimer’s disease. J. Neurosci. 24, 2304–2312 (2004). doi:10.1523/JNEUROSCI.4162-03.2004

    Google Scholar 

  26. Haass, C., Mandelkow, E.: Fyn-tau-amyloid: A toxic triad. Cell 142, 356–358 (2010). doi:10.1016/j.cell.2010.07.032

    Google Scholar 

  27. Ittner, L.M., Götz, J.: Amyloid-β and tau–a toxic pas de deux in Alzheimer’s disease. Nat. Rev. Neurosci. 12, 65–72 (2011). doi:10.1038/nrn2967

    Google Scholar 

  28. Rhein, V., Song, X., Wiesner, A., et al.: Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc. Natl. Acad. Sci. USA 106, 20057–20062 (2009). doi:10.1073/pnas.0905529106

    Google Scholar 

  29. Wyss-Coray, T., Rogers, J.: Inflammation in Alzheimer disease-A brief review of the basic science and clinical literature. Cold Spring Harb. Perspect. Med. 2, 1–23 (2012). doi:10.1101/cshperspect.a006346

    Google Scholar 

  30. Ballatore, C., Lee, V.M.-Y., Trojanowski, J.Q.: Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci. 8, 663–672 (2007). doi:10.1038/nrn2194

    Google Scholar 

  31. Glass, C.K., Saijo, K., Winner, B., et al.: Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918–934 (2010). doi:10.1016/j.cell.2010.02.016

    Google Scholar 

  32. Akiyama, H., Barger, S., Barnum, S., et al.: Inflammation and Alzheimer’s disease. Neurobiol. Aging (2000). doi:10.1016/S0197-4580(00)00124-X

    Google Scholar 

  33. Morales, I., Guzmán-Martínez, L., Cerda-Troncoso, C., et al.: Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Front. Cell. Neurosci. 8, 112 (2014). doi:10.3389/fncel.2014.00112

    Google Scholar 

  34. Zipp, F., Aktas, O.: The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci. 29, 518–527 (2006). doi:10.1016/j.tins.2006.07.006

    Google Scholar 

  35. Huang, Y., Mucke, L.: Alzheimer mechanisms and therapeutic strategies. Cell 148, 1204–1222 (2012). doi:10.1016/j.cell.2012.02.040

    Google Scholar 

  36. Bertram, L., McQueen, M.B., Mullin, K., et al.: Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet. 39, 17–23 (2007). doi:10.1038/ng1934

    Google Scholar 

  37. Kim, J., Basak, J.M., Holtzman, D.M.: The role of apolipoprotein E in Alzheimer’s disease. Neuron 63, 287–303 (2009). doi:10.1016/j.neuron.2009.06.026

    Google Scholar 

  38. Liu, C.-C., Liu, C.-C., Kanekiyo, T., et al.: Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol. 9, 106–118 (2013). doi:10.1038/nrneurol.2012.263

    Google Scholar 

  39. Jofre-Monseny, L., Minihane, A.-M., Rimbach, G.: Impact of apoE genotype on oxidative stress, inflammation and disease risk. Mol. Nutr. Food Res. 52, 131–145 (2008). doi:10.1002/mnfr.200700322

    Google Scholar 

  40. Obeso, J.A., Rodriguez-Oroz, M.C., Goetz, C.G., et al.: Missing pieces in the Parkinson’s disease puzzle. Nat. Med. 16, 653–661 (2010). doi:10.1038/nm.2165

    Google Scholar 

  41. Moore, D.J., West, A.B., Dawson, V.L., Dawson, T.M.: Molecular pathophysiology of Parkinson’s disease. Annu. Rev. Neurosci. 28, 57–87 (2005). doi:10.1146/annurev.neuro.28.061604.135718

    Google Scholar 

  42. Shulman, J.M., De Jager, P.L., Feany, M.B.: Parkinson’s disease: genetics and pathogenesis. Annu. Rev. Pathol. 6, 193–222 (2011). doi:10.1146/annurev-pathol-011110-130242

    Google Scholar 

  43. Goedert, M., Spillantini, M.G., Del Tredici, K., Braak, H.: 100 years of Lewy pathology. Nat. Rev. Neurol. 9, 13–24 (2013). doi:10.1038/nrneurol.2012.242

    Google Scholar 

  44. Lees, A.J., Hardy, J., Revesz, T., Lila, R.: Parkinson’s disease. Lancet 373, 2055–2066 (2009)

    Google Scholar 

  45. Nuytemans, K., Theuns, J., Cruts, M., Van Broeckhoven, C.: Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum. Mutat. 31, 763–780 (2010). doi:10.1002/humu.21277

    Google Scholar 

  46. Serpell, L.C., Berriman, J., Jakes, R., et al.: Fiber diffraction of synthetic alpha-synuclein filaments shows amyloid-like cross-beta conformation. Proc. Natl. Acad. Sci. USA 97, 4897–4902 (2000). doi:10.1073/pnas.97.9.4897

    Google Scholar 

  47. Dauer, W., Przedborski, S.: Parkinson’s Disease: Mechanisms and Models. Neuron 39, 889–909 (2003)

    Google Scholar 

  48. Henchcliffe, C., Beal, M.F.: Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat. Clin. Pract. Neurol. 4, 600–609 (2008). doi:10.1038/ncpneuro0924

    Google Scholar 

  49. Schapira, A.H.: Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol. 7, 97–109 (2008). doi:10.1016/S1474-4422(07)70327-7

    Google Scholar 

  50. West, A.B., Moore, D.J., Biskup, S., et al.: Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl. Acad. Sci. USA 102, 16842–16847 (2005). doi:10.1073/pnas.0507360102

    Google Scholar 

  51. Zimprich, A., Biskup, S., Leitner, P., et al.: Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601–607 (2004). doi:10.1016/j.neuron.2004.11.005

    Google Scholar 

  52. Clarimón, J., Pagonabarraga, J., Paisán-Ruíz, C., et al.: Tremor dominant Parkinsonism: Clinical description and LRRK2 mutation screening. Mov. Disord. 23, 518–523 (2008). doi:10.1002/mds.21771

    Google Scholar 

  53. Smith, W.W., Pei, Z., Jiang, H., et al.: Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat. Neurosci. 9, 1231–1233 (2006). doi:10.1038/nn1776

    Google Scholar 

  54. Nguyen, H.N., Byers, B., Cord, B., et al.: LRRK2 mutant iPSC-derived da neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8, 267–280 (2011). doi:10.1016/j.stem.2011.01.013

    Google Scholar 

  55. Tong, Y., Yamaguchi, H., Giaime, E., et al.: Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc. Natl. Acad. Sci. USA 107, 9879–9884 (2010). doi:10.1073/pnas.1004676107

    Google Scholar 

  56. Hirsch, E.C., Hunot, S.: Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 8, 382–397 (2009). doi:10.1016/S1474-4422(09)70062-6

    Google Scholar 

  57. Tansey, M.G., Goldberg, M.S.: Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol. Dis. 37, 510–518 (2010). doi:10.1016/j.nbd.2009.11.004

    Google Scholar 

  58. Mogi, M., Harada, M., Narabayashi, H., et al.: Interleukin (IL)-1??, IL-2, IL-4, IL-6 and transforming growth factor-?? levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci. Lett. 211, 13–16 (1996). doi:10.1016/0304-3940(96)12706-3

    Google Scholar 

  59. Götz, J., Ittner, L.M.: Animal models of Alzheimer’s disease and frontotemporal dementia. Nat. Rev. Neurosci. 9, 532–544 (2008). doi:10.1038/nrn2420

    Google Scholar 

  60. Games, D., Adams, D., Alessandrini, R., et al.: Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373, 523–527 (1995). doi:10.1038/373523a0

    Google Scholar 

  61. Bard, F., Cannon, C., Barbour, R., et al.: Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med. 6, 916–919 (2000). doi:10.1038/78682

    Google Scholar 

  62. Lewis, J., McGowan, E., Rockwood, J., et al.: Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat. Genet. 25, 402–405 (2000). doi:10.1038/79109

    Google Scholar 

  63. Götz, J., Chen, F., van Dorpe, J., Nitsch, R.M.: Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 293, 1491–1495 (2001). doi:10.1126/science.1062097

    Google Scholar 

  64. Santacruz, K., Lewis, J., Spires, T., et al.: Tau suppression in a neurodegenerative mouse model improves memory function. Science 309, 476–481 (2005). doi:10.1126/science.1113694

    Google Scholar 

  65. Oddo, S., Caccamo, A., Shepherd, J.D., et al.: Triple-transgenic model of Alzheimer’s Disease with plaques and tangles: Intracellular Aβ and synaptic dysfunction. Neuron 39, 409–421 (2003). doi:10.1016/S0896-6273(03)00434-3

    Google Scholar 

  66. Oddo, S., Caccamo, A., Kitazawa, M., et al.: Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol. Aging 24, 1063–1070 (2003). doi:10.1016/j.neurobiolaging.2003.08.012

    Google Scholar 

  67. Winton, M.J., Lee, E.B., Sun, E., et al.: Intraneuronal APP, not free Aβ peptides in 3xTg-AD mice: implications for tau versus Aβ-mediated Alzheimer neurodegeneration. J. Neurosci. 31, 7691–7699 (2011). doi:10.1523/JNEUROSCI.6637-10.2011

    Google Scholar 

  68. Yamada, K., Nabeshima, T.: Animal models of Alzheimer’s disease and evaluation of anti-dementia drugs. Pharmacol. Ther. 88, 93–113 (2000). doi:10.1016/S0163-7258(00)00081-4

    Google Scholar 

  69. Roberson, E.D., Scearce-Levie, K., Palop, J.J., et al.: Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316, 750–754 (2007). doi:10.1126/science.1141736

    Google Scholar 

  70. McColl, G., Roberts, B.R., Gunn, A.P., et al.: The Caenorhabditis elegans Aβ-42 model of Alzheimer disease predominantly Expresses Aβ 3-42. J. Biol. Chem. 284, 22697–22702 (2009). doi:10.1074/jbc.C109.028514

    Google Scholar 

  71. Treusch, S., Hamamichi, S., Goodman, J.L., et al.: Functional Links Between A Toxicity, Endocytic Trafficking, and Alzheimer’s Disease Risk Factors in Yeast. Science 334(80), 1241–1245 (2011). doi:10.1126/science.1213210

    Google Scholar 

  72. Muqit, M.M.K., Feany, M.B.: Modelling neurodegenerative diseases in Drosophila: a fruitful approach? Nat. Rev. Neurosci. 3, 237–243 (2002). doi:10.1038/nrn751

    Google Scholar 

  73. Limon, A., Reyes-Ruiz, J.M., Miledi, R.: Loss of functional GABAA receptors in the Alzheimer diseased brain. Proc. Natl. Acad. Sci. 109, 10071–10076 (2012). doi:10.1073/pnas.1204606109

    Google Scholar 

  74. Bishop, N.A., Lu, T., Yankner, B.A.: Neural mechanisms of ageing and cognitive decline. Nature 464, 529–535 (2010). doi:10.1038/nature08983

    Google Scholar 

  75. Dawson, T.M., Ko, H.S., Dawson, V.L.: Genetic Animal Models of Parkinson’s Disease. Neuron 66, 646–661 (2010). doi:10.1016/j.neuron.2010.04.034

    Google Scholar 

  76. Duty, S., Jenner, P.: Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br. J. Pharmacol. 164, 1357–1391 (2011). doi:10.1111/j.1476-5381.2011.01426.x

    Google Scholar 

  77. Blum, D., Torch, S., Lambeng, N., et al.: Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: Contribution to the apoptotic theory in Parkinson’s disease. Prog. Neurobiol. 65, 135–172 (2001). doi:10.1016/S0301-0082(01)00003-X

    Google Scholar 

  78. Lundblad, M., Andersson, M., Winkler, C., et al.: Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. Eur. J. Neurosci. 15, 120–132 (2002). doi:10.1046/j.0953-816x.2001.01843.x

    Google Scholar 

  79. Deumens, R., Blokland, A., Prickaerts, J.: Modeling Parkinson’s disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp. Neurol. 175, 303–317 (2002). doi:10.1006/exnr.2002.7891

    Google Scholar 

  80. Betarbet, R., Sherer, T.B., Greenamyre, J.T.: Animal models of Parkinson’s disease. Bioessays 24, 308–318 (2002). doi:10.1002/bies.10067

    Google Scholar 

  81. Rosin, B., Slovik, M., Mitelman, R., et al.: Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72, 370–384 (2011). doi:10.1016/j.neuron.2011.08.023

    Google Scholar 

  82. Tass, P.A., Qin, L., Hauptmann, C., et al.: Coordinated reset has sustained aftereffects in Parkinsonian monkeys. Ann. Neurol. 72, 816–820 (2012). doi:10.1002/ana.23663

    Google Scholar 

  83. Meredith, G.E., Sonsalla, P.K., Chesselet, M.-F.: Animal models of Parkinson’s disease progression. Acta Neuropathol. 115, 385–398 (2008). doi:10.1007/s00401-008-0350-x

    Google Scholar 

  84. Palacino, J.J., Sagi, D., Goldberg, M.S., et al.: Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J. Biol. Chem. 279, 18614–18622 (2004). doi:10.1074/jbc.M401135200

    Google Scholar 

  85. Clark, I.E., Dodson, M.W., Jiang, C., et al.: Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162–1166 (2006). doi:10.1038/nature04779

    Google Scholar 

  86. Van der Worp, H.B., Howells, D.W., Sena, E.S., et al.: Can animal models of disease reliably inform human studies? PLoS Med. 7, e1000245 (2010). doi:10.1371/journal.pmed.1000245

    Google Scholar 

  87. Young, J.E., Goldstein, L.S.B.: Alzheimer’s disease in a dish: promises and challenges of human stem cell models. Hum. Mol. Genet. 21, R82–R89 (2012). doi:10.1093/hmg/dds319

    Google Scholar 

  88. Bellin, M., Marchetto, M.C., Gage, F.H., Mummery, C.L.: Induced pluripotent stem cells: the new patient? Nat. Rev. Mol. Cell Biol. 13, 713–726 (2012). doi:10.1038/nrm3448

    Google Scholar 

  89. Takahashi, K., Tanabe, K., Ohnuki, M., et al.: Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 131, 861–872 (2007). doi:10.1016/j.cell.2007.11.019

    Google Scholar 

  90. Park, I.-H., Arora, N., Huo, H., et al.: Disease-specific induced pluripotent stem cells. Cell 134, 877–886 (2008). doi:10.1016/j.cell.2008.07.041

    Google Scholar 

  91. Marchetto, M.C., Brennand, K.J., Boyer, L.F., Gage, F.H.: Induced pluripotent stem cells (iPSCs) and neurological disease modeling: progress and promises. Hum. Mol. Genet. 20, R109–R115 (2011). doi:10.1093/hmg/ddr336

    Google Scholar 

  92. Israel, M.A., Yuan, S.H., Bardy, C., et al.: Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482, 216–220 (2012). doi:10.1038/nature10821

    Google Scholar 

  93. Kondo, T., Asai, M., Tsukita, K., et al.: Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell 12, 487–496 (2013). doi:10.1016/j.stem.2013.01.009

    Google Scholar 

  94. Choi, S.H., Kim, Y.H., Hebisch, M., et al.: A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature 515, 274–278 (2014). doi:10.1038/nature13800

    Google Scholar 

  95. Shi, Y., Kirwan, P., Smith, J., et al.: A Human Stem Cell Model of Early Alzheimer’s Disease Pathology in Down Syndrome. Sci. Transl. Med. 4, 1–9 (2012)

    Google Scholar 

  96. Perrier, A.L., Tabar, V., Barberi, T., et al.: Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 101, 12543–12548 (2004). doi:10.1073/pnas.0404700101

    Google Scholar 

  97. Swistowski, A., Peng, J., Liu, Q., et al.: Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells 28, 1893–1904 (2010). doi:10.1002/stem.499

    Google Scholar 

  98. Soldner, F., Laganière, J., Cheng, A.W., et al.: Generation of isogenic pluripotent stem cells differing exclusively at two early onset parkinson point mutations. Cell 146, 318–331 (2011). doi:10.1016/j.cell.2011.06.019

    Google Scholar 

  99. Sánchez-Danés, A., Richaud-Patin, Y., Carballo-Carbajal, I., et al.: Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Mol. Med. 4, 380–395 (2012). doi:10.1002/emmm.201200215

    Google Scholar 

  100. Soldner, F., Hockemeyer, D., Beard, C., et al.: Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136, 964–977 (2009). doi:10.1016/j.cell.2009.02.013

    Google Scholar 

  101. Zhou, B.Y., Ye, Z., Chen, G., et al.: Inducible and reversible transgene expression in human stem cells after efficient and stable gene transfer. Stem Cells 25, 779–789 (2007). doi:10.1634/stemcells.2006-0128

    Google Scholar 

  102. Brambrink, T., Foreman, R., Welstead, G.G., et al.: Sequential Expression of Pluripotency Markers during Direct Reprogramming of Mouse Somatic Cells. Cell Stem Cell 2, 151–159 (2008). doi:10.1016/j.stem.2008.01.004

    Google Scholar 

  103. Yu, D.X., Marchetto, M.C., Gage, F.H.: Therapeutic translation of iPSCs for treating neurological disease. Cell Stem Cell 12, 678–688 (2013). doi:10.1016/j.stem.2013.05.018

    Google Scholar 

  104. Scarpini, E., Schelterns, P., Feldman, H.: Treatment of Alzheimer’s disease; current status and new perspectives. Lancet Neurol. 2, 539–547 (2003). doi:10.1016/S1474-4422(03)00502-7

    Google Scholar 

  105. Mangialasche, F., Solomon, A., Winblad, B., et al.: Alzheimer’s disease: clinical trials and drug development. Lancet Neurol. 9, 702–716 (2010). doi:10.1016/S1474-4422(10)70119-8

    Google Scholar 

  106. Cramer, P.E., Cirrito, J.R., Wesson, D.W., et al.: ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science 335, 1503–1506 (2012). doi:10.1126/science.1217697

    Google Scholar 

  107. Fahn, S., Oakes, D., Shoulson, I., et al.: Levodopa and the progression of Parkinson’s disease. N. Engl. J. Med. 351, 2498–2508 (2004). doi:10.1007/s11910-005-0069-1

    Google Scholar 

  108. Schapira, A.H.V.: Treatment options in the modern management of Parkinson disease. Arch. Neurol. 64, 1083–1088 (2007). doi:10.1001/archneur.64.8.1083

    Google Scholar 

  109. Shishodia, S., Sethi, G., Aggarwal, B.B.: Curcumin: getting back to the roots. Ann. N. Y. Acad. Sci. 1056, 206–217 (2005). doi:10.1196/annals.1352.010

    Google Scholar 

  110. Begum, A.N., Jones, M.R., Lim, G.P., et al.: Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J. Pharmacol. Exp. Ther. 326, 196–208 (2008). doi:10.1124/jpet.108.137455

    Google Scholar 

  111. Cole, G.M., Teter, B., Frautschy, S.A.: Neuroprotective effects of curcumin. In: Aggarwal, B.B., Surh, Y.-J., Shishodia, S. (eds) Mol. Targets Ther. Uses Curcumin Heal. Dis., pp 197–212. Springer US (2007)

    Google Scholar 

  112. Lim, G.P., Chu, T., Yang, F., et al.: The Curry Spice Curcumin Reduces Oxidative Damage and Amyloid Pathology in an Alzheimer Transgenic Mouse. J. Neurosci. 21, 8370–8377 (2001)

    Google Scholar 

  113. Anand, P., Kunnumakkara, A.B., Newman, R.A., Aggarwal, B.B.: Bioavailability of curcumin: problems and promises. Mol. Pharm. 4, 807–818 (2007). doi:10.1021/mp700113r

    Google Scholar 

  114. Lim, G.P., Yang, F., Chu, T., et al.: Ibuprofen effects on Alzheimer pathology and open field activity in APPsw transgenic mice. J. Neurosci. 22, 983–991 (2001)

    Google Scholar 

  115. Gasparini, L., Ongini, E., Wenk, G.: Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer’s disease: old and new mechanisms of action. J. Neurochem. 91, 521–536 (2004). doi:10.1111/j.1471-4159.2004.02743.x

    Google Scholar 

  116. Beal, M.F.: Mitochondrial Dysfunction and Oxidative Damage in Alzheimer’s and Parkinson’s Diseases and Coenzyme Q 10 as a Potential Treatment. J. Bioenerg. Biomembr. 36, 381–386 (2004)

    Google Scholar 

  117. Cleren, C., Yang, L., Lorenzo, B., et al.: Therapeutic effects of coenzyme Q10 (CoQ10) and reduced CoQ10 in the MPTP model of Parkinsonism. J. Neurochem. 104, 1613–1621 (2008). doi:10.1111/j.1471-4159.2007.05097.x

    Google Scholar 

  118. Beal, M.F.: Mitochondria, Oxidative Damage, and Inflammation in Parkinson’s Disease. Ann. N. Y. Acad. Sci. 991, 120–131 (2003)

    Google Scholar 

  119. Vierbuchen, T., Ostermeier, A., Pang, Z.P., et al.: Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035–1041 (2010). doi:10.1038/nature08797

    Google Scholar 

  120. Guo, Z., Zhang, L., Wu, Z., et al.: In Vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell 14, 188–202 (2014). doi:10.1016/j.stem.2013.12.001

    Google Scholar 

  121. Liang, J., Wu, S., Zhao, H., et al.: Human umbilical cord mesenchymal stem cells derived from Wharton’s jelly differentiate into cholinergic-like neurons in vitro. Neurosci. Lett. 532, 59–63 (2013). doi:10.1016/j.neulet.2012.11.014

    Google Scholar 

  122. Fischer, W., Wictorin, K., Björklund, A., et al.: Amelioration of cholinergic neuron atrophy and patial memory impariment in aged rats by nerve growth factor. Nature 329, 65–68 (1987)

    Google Scholar 

  123. Lindvall, O., Kokaia, Z.: Stem cells for the treatment of neurological disorders. Nature 441, 1094–1096 (2006). doi:10.1038/nature04960

    Google Scholar 

  124. Tuszynski, M.H., Thal, L., Pay, M., et al.: A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat. Med. 11, 551–555 (2005). doi:10.1038/nm1239

    Google Scholar 

  125. Bishop, K.M., Hofer, E.K., Mehta, A., et al.: Therapeutic potential of CERE-110 (AAV2-NGF): targeted, stable, and sustained NGF delivery and trophic activity on rodent basal forebrain cholinergic neurons. Exp. Neurol. 211, 574–584 (2008). doi:10.1016/j.expneurol.2008.03.004

    Google Scholar 

  126. Fjord-Larsen, L., Kusk, P., Tornøe, J., et al.: Long-term delivery of nerve growth factor by encapsulated cell biodelivery in the Göttingen minipig basal forebrain. Mol. Ther. 18, 2164–2172 (2010). doi:10.1038/mt.2010.154

    Google Scholar 

  127. Wahlberg, L.U., Lind, G., Almqvist, P.M., et al.: Targeted delivery of nerve growth factor via encapsulated cell biodelivery in Alzheimer disease: a technology platform for restorative neurosurgery. J. Neurosurg. 117, 340–347 (2012). doi:10.3171/2012.2.JNS11714

    Google Scholar 

  128. Nagahara, A.H., Tuszynski, M.H.: Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat. Rev. Drug Discov. 10, 209–219 (2011). doi:10.1038/nrd3366

    Google Scholar 

  129. Blurton-jones, M., Kitazawa, M., Martinez-coria, H., et al.: Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc. Natl. Acad. Sci. 106, 1–6 (2009)

    Google Scholar 

  130. Nagahara, A.H., Merrill, D.A., Coppola, G., et al.: Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat. Med. 15, 331–337 (2009). doi:10.1038/nm.1912

    Google Scholar 

  131. Shihabuddin, L.S., Aubert, I.: Stem cell transplantation for neurometabolic and neurodegenerative diseases. Neuropharmacology 58, 845–854 (2010). doi:10.1016/j.neuropharm.2009.12.015

    Google Scholar 

  132. Lindvall, O., Kokaia, Z.: Stem cells in human neurodegenerative disorders — time for clinical translation? J. Clin. Invest. 120, 29–40 (2010). doi:10.1172/JCI40543.patients

    Google Scholar 

  133. Farris, W., Mansourian, S., Chang, Y., et al.: Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc. Natl. Acad. Sci. USA 100, 4162–4167 (2003). doi:10.1073/pnas.0230450100

    Google Scholar 

  134. Marr, R.A., Rockenstein, E., Mukherjee, A., et al.: Neprilysin Gene Transfer Reduces Human Amyloid Pathology in Transgenic Mice. J. Neurosci. 23, 1992–1996 (2003)

    Google Scholar 

  135. Yasojima, K., Akiyama, H., Mcgeer, E.G., Mcgeer, P.L.: Reduced neprilysin in high plaque areas of Alzheimer brain: a possible relationship to deficient degradation of b-amyloid peptide. Neurosci. Lett. 297, 97–100 (2001)

    Google Scholar 

  136. Singer, O., Marr, R.A., Rockenstein, E., et al.: Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat. Neurosci. 8, 1343–1349 (2005). doi:10.1038/nn1531

    Google Scholar 

  137. Pickford, F., Masliah, E., Britschgi, M., et al.: The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J. Clin. Invest. 118, 2190–2199 (2008). doi:10.1172/JCI33585

    Google Scholar 

  138. Vidal, R.L., Matus, S., Bargsted, L., Hetz, C.: Targeting autophagy in neurodegenerative diseases. Trends Pharmacol. Sci. 35, 583–591 (2014). doi:10.1016/j.tips.2014.09.002

    Google Scholar 

  139. Rubinsztein, D.C.: The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780–786 (2006). doi:10.1038/nature05291

    Google Scholar 

  140. Kordower, J.H., Freeman, T.B., Snow, B.J., et al.: Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N. Engl. J. Med. 332, 1118–1124 (1995). doi:10.1056/NEJM199504273321702

    Google Scholar 

  141. Piccini, P., Brooks, D., Björklund, A.: Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nature Neuroscience 2, 1137–1140 (1999)

    Google Scholar 

  142. Barker, R.A., Barrett, J., Mason, S.L., Björklund, A.: Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol. 12, 84–91 (2013). doi:10.1016/S1474-4422(12)70295-8

    Google Scholar 

  143. Piccini, P., Pavese, N., Hagell, P., et al.: Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease. Brain 128, 2977–2986 (2005). doi:10.1093/brain/awh649

    Google Scholar 

  144. Bjorklund, L.M., Sa, R., Chung, S., et al.: Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl. Acad. Sci. 99, 2344–2349 (2002)

    Google Scholar 

  145. Kriks, S., Shim, J.-W., Piao, J., et al.: Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480, 547–551 (2011). doi:10.1038/nature10648

    Google Scholar 

  146. Kim, J., Auerbach, J.M.: Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418, 50–56 (2002)

    Google Scholar 

  147. Politis, M., Lindvall, O.: Clinical application of stem cell therapy in Parkinson’s disease. BMC Med. 10, 1 (2012). doi:10.1186/1741-7015-10-1

    Google Scholar 

  148. Wernig, M., Zhao, J.-P., Pruszak, J., et al.: Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc. Natl. Acad. Sci. USA 105, 5856–5861 (2008). doi:10.1073/pnas.0801677105

    Google Scholar 

  149. Hargus, G., Cooper, O., Deleidi, M., et al.: Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc. Natl. Acad. Sci. USA 107, 15921–15926 (2010). doi:10.1073/pnas.1010209107

    Google Scholar 

  150. Kwon, Y.-W., Chung, Y.-J., Kim, J., et al.: Comparative study of efficacy of dopaminergic neuron differentiation between embryonic stem cell and protein-based induced pluripotent stem cell. PLoS One 9, e85736 (2014). doi:10.1371/journal.pone.0085736

    Google Scholar 

  151. Hentze, H., Graichen, R., Colman, A.: Cell therapy and the safety of embryonic stem cell-derived grafts. Trends Biotechnol. 25, 24–32 (2007). doi:10.1016/j.tibtech.2006.10.010

    Google Scholar 

  152. Caiazzo, M., Dell’Anno, M.T., Dvoretskova, E., et al.: Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476, 224–227 (2011). doi:10.1038/nature10284

    Google Scholar 

  153. Pfisterer, U., Kirkeby, A., Torper, O., et al.: Direct conversion of human fibroblasts to dopaminergic neurons. Proc. Natl. Acad. Sci. USA 108, 10343–10348 (2011). doi:10.1073/pnas.1105135108

    Google Scholar 

  154. Jarraya, B., Boulet, S., Ralph, G.S., et al.: Dopamine Gene Therapy for Parkinson’s Disease in a Nonhuman Primate Without Associated Dyskinesia. Sci. Transl. Med. 1, 1–11 (2009)

    Google Scholar 

  155. Azzouz, M., Martin-rendon, E., Barber, R.D., et al.: Multicistronic Lentiviral Vector-Mediated Striatal Gene Transfer of Aromatic L -Amino Acid Decarboxylase, Tyrosine Hydroxylase, and GTP Cyclohydrolase I Induces Sustained Transgene Expression, Dopamine Production, and Functional Improvement in a Rat M. J. Neurosci. 22, 10302–10312 (2002)

    Google Scholar 

  156. Bankiewicz, K.S., Eberling, J.L., Kohutnicka, M., et al.: Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp. Neurol. 164, 2–14 (2000). doi:10.1006/exnr.2000.7408

    Google Scholar 

  157. Bankiewicz, K.S., Forsayeth, J., Eberling, J.L., et al.: Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol. Ther. 14, 564–570 (2006). doi:10.1016/j.ymthe.2006.05.005

    Google Scholar 

  158. Muramatsu, S., Fujimoto, K., Kato, S., et al.: A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol. Ther. J. Am. Soc. Gene. Ther. 18, 1731–1735 (2010). doi:10.1038/mt.2010.135

    Google Scholar 

  159. Luo, J., Kaplitt, M.G., Fitzsimons, H.L., et al.: Subthalamic GAD Gene Therapy in a Parkinson’s Disease Rat Model. Science 298(80), 425–429 (2002)

    Google Scholar 

  160. LeWitt, P.A., Rezai, A.R., Leehey, M.A., et al.: AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 10, 309–319 (2011). doi:10.1016/S1474-4422(11)70039-4

    Google Scholar 

  161. Kordower, J.H., Emborg, M.E., Bloch, J., et al.: Neurodegeneration Prevented by Lentiviral Vector Delivery of GDNF in Primate Models of Parkinson’s Disease. Science 290(80), 767–773 (2000)

    Google Scholar 

  162. Gasmi, M., Herzog, C.D., Brandon, E.P., et al.: Striatal delivery of neurturin by CERE-120, an AAV2 vector for the treatment of dopaminergic neuron degeneration in Parkinson’s disease. Mol. Ther. 15, 62–68 (2007). doi:10.1038/sj.mt.6300010

    Google Scholar 

  163. Marks, W.J., Ostrem, J.L., Verhagen, L., et al.: Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol. 7, 400–408 (2008). doi:10.1016/S1474-4422(08)70065-6

    Google Scholar 

  164. Marks, W.J., Bartus, R.T., Siffert, J., et al.: Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol. 9, 1164–1172 (2010). doi:10.1016/S1474-4422(10)70254-4

    Google Scholar 

  165. Åkerud, P., Canals, J.M., Snyder, E.Y., Arenas, E.: Neuroprotection through Delivery of Glial Cell Line-Derived Neurotrophic Factor by Neural Stem Cells in a Mouse Model of Parkinson’s Disease. J. Neurosci. 21, 8108–8118 (2001)

    Google Scholar 

  166. Biju, K., Zhou, Q., Li, G., et al.: Macrophage-mediated GDNF delivery protects against dopaminergic neurodegeneration: a therapeutic strategy for Parkinson’s disease. Mol. Ther. 18, 1536–1544 (2010). doi:10.1038/mt.2010.107

    Google Scholar 

  167. Brody, D.L., Holtzman, D.M.: Active and passive immunotherapy for neurodegenerative disorders. Annu. Rev. Neurosci. 31, 175–193 (2008). doi:10.1146/annurev.neuro.31.060407.125529

    Google Scholar 

  168. DeMattos, R.B., Bales, K.R., Cummins, D.J., et al.: Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 98, 8850–8855 (2001). doi:10.1073/pnas.151261398

    Google Scholar 

  169. Dodart, J.-C., Bales, K.R., Gannon, K.S., et al.: Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nat. Neurosci. 5, 452–457 (2002). doi:10.1038/nn842

    Google Scholar 

  170. Wilcock, D.M., Dicarlo, G., Henderson, D., et al.: Intracranially Administered Anti-AB Antibodies Reduce B-Amyloid Deposition by Mechanisms Both Independent of and Associated with Microglial Activation. J. Neurosci. 23, 3745–3751 (2003)

    Google Scholar 

  171. Holmes, C., Boche, D., Wilkinson, D., et al.: Long-term effects of Aβ 42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372, 11–14 (2008)

    Google Scholar 

  172. Oddo, S., Billings, L., Kesslak, J.P., et al.: Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43, 321–332 (2004). doi:10.1016/j.neuron.2004.07.003

    Google Scholar 

  173. Klyubin, I., Walsh, D.M., Lemere, C.A., et al.: Amyloid beta protein immunotherapy neutralizes Abeta oligomers that disrupt synaptic plasticity in vivo. Nat. Med. 11, 556–561 (2005). doi:10.1038/nm1234

    Google Scholar 

  174. Asuni, A.A., Boutajangout, A., Quartermain, D., Sigurdsson, E.M.: Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J. Neurosci. 27, 9115–9129 (2007). doi:10.1523/JNEUROSCI.2361-07.2007

    Google Scholar 

  175. Boutajangout, A., Quartermain, D., Sigurdsson, E.M.: Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J. Neurosci. 30, 16559–16566 (2010). doi:10.1523/JNEUROSCI.4363-10.2010

    Google Scholar 

  176. Boutajangout, A., Ingadottir, J., Davies, P., Sigurdsson, E.M.: Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J. Neurochem. 118, 658–667 (2011). doi:10.1111/j.1471-4159.2011.07337.x

    Google Scholar 

  177. Masliah, E., Rockenstein, E., Adame, A., et al.: Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 46, 857–868 (2005). doi:10.1016/j.neuron.2005.05.010

    Google Scholar 

  178. Benner, E.J., Mosley, R.L., Destache, C.J., et al.: Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA 101, 9435–9440 (2004). doi:10.1073/pnas.0400569101

    Google Scholar 

  179. Reynolds, A.D., Banerjee, R., Liu, J., et al.: Neuroprotective activities of CD4+CD25+ regulatory T cells in an animal model of Parkinson’s disease. J. Leukoc. Biol. 82, 1083–1094 (2007). doi:10.1189/jlb.0507296

    Google Scholar 

  180. Reynolds, A.D., Stone, D.K., Hutter, J.A.L., et al.: Regulatory T cells attenuate Th17 cell-mediated nigrostriatal dopaminergic neurodegeneration in a model of Parkinson’s disease. J. Immunol. 184, 2261–2271 (2010). doi:10.4049/jimmunol.0901852

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongTae Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Santiago-Lopez, A.J., Hovell, C.M., Lee, H., Kim, Y. (2016). Neuroregeneration: Disease Modeling and Therapeutic Strategies for Alzheimer’s and Parkinson’s Diseases. In: Jo, H., Jun, HW., Shin, J., Lee, S. (eds) Biomedical Engineering: Frontier Research and Converging Technologies. Biosystems & Biorobotics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-21813-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21813-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21812-0

  • Online ISBN: 978-3-319-21813-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics