Skip to main content

From Neurogenic Niche to Site of Injury: Stem Cell-Mediated Biobridge for Brain Repair

  • Chapter
  • First Online:
Biology in Stem Cell Niche

Abstract

Cell replacement and “bystander” effects of stem cells are currently the widely postulated mechanisms of stem cell-mediated repair. In a recent study, we reported efficacy of modified mesenchymal stromal cell (MSC) transplantation in animal models of traumatic brain injury (TBI), revealing data that corroborate the therapeutic potential of stem cell transplantation for brain injuries, and importantly, evidence that support another mechanism of action of transplanted stem cells. We found that intracerebrally administered SB623 cells (gene-modified human MSCs provided by SanBio Inc.) improved TBI-induced neurobehavioral deficits, via a unique mechanism of action involving the formation of a “biobridge” during the repair phase of TBI. Using immunohistochemistry and laser capture assay, we observed localization of this biobridge in an area between the neurogenic subventricular zone and the injured cortex. This stem cell-paved biobridge expressed high levels of extracellular matrix metalloproteinases (MMPs), which initially co-existed with a stream of transplanted MSCs, and later contained a few to non-detectable grafts and overgrown by newly recruited host cells. We advanced the concept that the biobridge facilitated the long-distance migration of host cells from the neurogenic niche to the injured brain site, representing a key regenerative process that highlights the potential of stem cell grafts to initiate endogenous repair mechanisms. Further studies on elucidating graft-host interaction will likely contribute to in-depth characterization of stem cell-paved biobridge, as a robust brain repair mechanism alongside cell replacement and trophic factor secretion, into a new treatment strategy for TBI and other neurological dysfunctions. In this chapter, we discuss the characteristics of stem cell paved-biobridges, the novel mechanism by which they promote neural repair in a rat model of TBI, and describe the clinical significance, challenges and opportunities of employing this novel stem cell-mediated brain repair concept for the treatment of other neurological disorders beyond TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CC:

Corpus callosum

DCX:

Doublecortin

ECM:

Extracellular matrix

MSC:

Mesenchymal stromal cell

MMP:

Matrix metalloproteinase

OEC:

Olfactory ensheathing cell

PD:

Parkinson’s disease

SC:

Schwann cell

SGZ:

Subgranular zone

SVZ:

Subventricular zone

TBI:

Traumatic brain injury

References

  1. Ma DK, Marchetto MC, Guo JU, Ming GL, Gage FH, Song H. Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci. 2010;13:1338–1344.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Borlongan CV. Bone marrow stem cell mobilization in stroke: a ‘bonehead’ may be good after all! Leukemia. 2011;25:1674–1686. doi:10.1038/leu.2011.167.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Barha CK, Ishrat T, Epp JR, Galea LA, Stein DG. Progesterone treatment normalizes the levels of cell proliferation and cell death in the dentate gyrus of the hippocampus after traumatic brain injury. Exp Neurol. 2011;231:72–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Jaskelioff M, Muller FL, Paik JH, Thomas E, Jiang S, Adams AC, et al. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature. 2011;469:102–106. doi:10.1038/nature09603.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Wang L, Chopp M, Teng H, Bolz M, Francisco MA, Aluigi DM, et al. Tumor necrosis factor α primes cerebral endothelial cells for erythropoietin-induced angiogenesis. J Cereb Blood Flow Metab. 2011;31:640–647. doi:10.1038/jcbfm.2010.138.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Andres RH, Horie N, Slikker W, Keren-Gill H, Zhan K, Sun G, et al. Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain. 2011;134:1777–1789. doi:10.1093/brain/awr094.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Liu Z, Li Y, Zhang RL, Cui Y, Chopp M. Bone marrow stromal cells promote skilled motor recovery and enhance contralesional axonal connections after ischemic stroke in adult mice. Stroke. 2011;42:740–744. doi:10.1161/STROKEAHA.110.607226.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Mazzocchi-Jones D, Döbrössy M, Dunnet SB. Embryonic striatal grafts restore bi-directional synaptic plasticity in a rodent model of Huntington’s disease. Eur J Neurosci. 2009;30:2134–2142. doi:10.1111/j.1460-9568.2009.07006.x.

    Article  PubMed  Google Scholar 

  9. Lee HS, Bae EJ, Yi SH, Shim JW, Jo AY, Kang JS, et al. Foxa2 and Nurr1 synergistically yield A9 nigral dopamine neurons exhibiting improved differentiation, function, and cell survival. Stem Cells. 2010;28:501–512. doi:10.1002/stem.294.

    CAS  PubMed  Google Scholar 

  10. Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E, et al. Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci USA. 2010;107:15921–15926. doi:10.1073/pnas.1010209107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Yasuda A, Tsuji O, Shibata S, Nori S, Takano M, Kobayashi Y, et al. Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord. Stem Cell. 2011;29:1983–1994. doi:10.1002/stem.767.

    Article  Google Scholar 

  12. Mezey E. The therapeutic potential of bone marrow-derived stem cells. J Cell Biochem. 2011;112:2683–2687. doi:10.1002/jcb.23216.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kim Y, Sharov AA, McDole K, Cheng M, Hao H, Fan CM, et al. Mouse B-type lamins are required for proper organogenesis but not by embryonic stem cells. Science. 2011;334:1706–1710. doi:10.1126/science.1211222.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Sanai N, Nguyen T, Ihrie RA, Mirzadeh Z, Tsai HH, Wong M, et al. Corridors of migrating neurons in the human brain and their decline during infancy. Nature. 2011;478:382–386. doi:10.1038/nature10487.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Carlén M, Meletis K, Goritz C, Darsalia V, Evergren E, Tanigaki K, et al. Forebrain ependymal cells are notch-dependent and generate neuroblasts and astrocytes after stroke. Nat Neurosci. 2009;12:259–267. doi:10.1038/nn.2268.

    Article  PubMed  Google Scholar 

  16. Robel S, Berninger B, Gotz M. The stem cell potential of glia: lessons from reactive gliosis. Nat Rev Neurosci. 2011;12:88–104. doi:10.1038/nrn2978.

    Article  CAS  PubMed  Google Scholar 

  17. Yasuhara T, Hara K, Maki M, Mays RW, Deans RJ, Hess DC, et al. Intravenous grafts recapitulate the neurorestoration afforded by intracerebrally delivered multipotent adult progenitor cells in neonatal hypoxic-ischemic rats. J Cereb Blood Flow Metab. 2008;28:1804–1810. doi:10.1038/jcbfm.2008.68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Yasuhara T, Matsukawa N, Hara K, Yu G, Xu L, Maki M, et al. Transplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson’s disease. J Neurosci. 2006;26:12497–12511. doi:10.1523/JNEUROSCI.3719-06.2006.

    Article  CAS  PubMed  Google Scholar 

  19. Tajiri N, Acosta S, Glover LE, Bickford PC, Jacotte Simancas A, Yasuhara T, et al. Intravenous grafts of amniotic fluid-derived stem cells induce endogenous cell proliferation and attenuate behavioral deficits in ischemic stroke rats. PLoS ONE. 2012;7:e43779. doi:10.1371/journal.pone.0043779.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Seol HJ, Jin J, Seong DH, Joo KM, Kang W, Yang H, et al. Genetically engineered human neural stem cells with rabbit carboxyl esterase can target brain metastasis from breast cancer. Cancer Lett. 2011;311:152–159. doi:10.1016/j.canlet.2011.07.001.

    Article  CAS  PubMed  Google Scholar 

  21. Yasuhara T, Matsukawa N, Hara K, Maki M, Ali MM, Yu SJ, et al. Notch-induced rat and human bone marrow stromal cell grafts reduce ischemic cell loss and ameliorate behavioral deficits in chronic stroke animals. Stem Cells Dev. 2009;18:1501–1514. doi:10.1089/scd.2009.0011.

    Article  CAS  PubMed  Google Scholar 

  22. Pollock K, Stroemer P, Patel S, Stevanato L, Hope A, Miljan E, et al. A conditionally immortal clonal stem cell line form human cortical neuroepithelium for the treatment of ischemic stroke. Exp Neurol. 2006;199:143–155. doi:10.1016/j.expneurol.2005.12.011.

    Article  PubMed  Google Scholar 

  23. Borlongan CV, Hadman M, Sanberg CD, Sanberg PR. Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke. 2004;35:2385–2389. doi:10.1161/01.STR.0000141680.49960.d7.

    Article  PubMed  Google Scholar 

  24. Pastori C, Librizzi L, Breschi GL, Regondi C, Frassoni C, Panzica F, et al. Arterially perfused neurosphere-derived cells distribute outside the ischemic core in a model of transient focal ischemia and reperfusion in vitro. PLoS ONE. 2008;3:e2754. doi:10.1371/journal.pone.0002754.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Redmond DE Jr, Bjugstad KB, Teng YD, Ourednik V, Ourednik J, Wakeman DR, et al. Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. Proc Natl Acad Sci USA. 2007;104:12175–12180. doi:10.1073/pnas.0704091104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Lee JP, Jeyakumar M, Gonzalez R, Takahashi H, Lee PJ, Baek RC, et al. Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nat Med. 2007;13:439–447.

    Article  CAS  PubMed  Google Scholar 

  27. Tajiri N, Kaneko Y, Shinozuka K, Ishikawa H, Yankee E, McGrogan M, Case C, Borlongan CV. Stem cell recruitment of newly formed host cells via a successful seduction? Filling the gap between neurogenic niche and injured brain site. PLoS ONE. 2013;8:e74857. doi:10.1371/journal.pone.0074857.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Zhao BQ, Tejima E, Lo EH. Neurovascular proteases in brain injury, hemorrhage and remodeling after stroke. Stroke. 2007;38:748–752. doi:10.1161/01.STR.0000253500.32979.dl.

    Article  CAS  PubMed  Google Scholar 

  29. Park KP, Rosell A, Foerch C, Xing C, Kim WJ, Lee S, et al. Plasma and brain matrix metalloproteinase-9 after acute focal cerebral ischemia in rats. Stroke. 2009;40:2836–2842. doi:10.1161/STROKEAHA.109.554824.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. del Zoppo GJ, Frankowski H, Gu YH, Osada T, Kanazawa M, Milner R, et al. Microglial cell activation is a source of metalloproteinase generation during hemorrhagic transformation. J Cereb Blood Flow Metab. 2012;32:919–932. doi:10.1038/jcbfm.2012.11.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Barkho BZ, Munoz AE, Li X, Li L, Cunningham LA, Zhao X. Endogenous matrix metalloproteinase (MMP)-3 and MMP-9 promote the differentiation and migration of adult neural progenitor cells in response to chemokines. Stem Cells. 2008;26:3139–3149. doi:10.1634/stemcells.2008-0519.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Sobrino T, Perez-Mato M, Brea D, Rodriguez-Yanez M, Blanco M, Castillo J. Temporal profile of molecular signatures associated with circulating endothelial progenitor cells in human ischemic stroke. J Neurosci Res. 2012;90:1788–1793. doi:10.1002/jnr.23068.

    Article  CAS  PubMed  Google Scholar 

  33. Lin CH, Lee HT, Lee SD, Lee W, Cho CW, Lin SZ, et al. Role of HIF-1alpha-activated Epac1 on HSC-mediated neuroplasticity in stroke model. Neurobiol Dis. 2013;58:76–91. doi:10.1016/j.nbd.2013.05.006.

    Article  CAS  PubMed  Google Scholar 

  34. Ekdahl CT, Kokaia Z, Lindvall O. Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience. 2009;158:1021–1029. doi:10.1016/j.neuroscience.2008.06.052.

    Article  CAS  PubMed  Google Scholar 

  35. Hassani Z, O’Reilly J, Pearse Y, Stroemer P, Tang E, Sinden J, et al. Human neural progenitor cell engraftment increases neurogenesis and microglial recruitment in the brain of rats with stroke. PLoS ONE. 2012;7:e50444. doi:10.1371/journal.pone.0050444.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Trueman RC, Klein A, Lindgren HS, Lelos MJ, Dunnett SB. Repair of the CNS using endogenous and transplanted neural stem cells. Curr Top Behav Neurosci. 2013;15:357–398. doi:10.1007/7854_2012_223.

    Article  CAS  PubMed  Google Scholar 

  37. Wang X, Mao X, Xie L, Sun F, Greenberg DA, Jin K. Conditional depletion of neurogenesis inhibits long-term recovery after experimental stroke in mice. PLoS ONE. 2012;7:e38932. doi:10.1371/journal.pone.0038932.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Ducruet AF, Zacharia BE, Sosunov SA, Gigante PR, Yeh ML, Gorski JW, et al. Complement inhibition promotes endogenous neurogenesis and sustained anti-inflammatory neuroprotection following reperfused stroke. PLoS ONE. 2012;7:e38664. doi:10.1371/journal.pone.0038664.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Alvarez-Buylla A, Kohwi M, Nguyen TM, Merkle FT. The heterogeneity of adult neural stem cells and the emerging complexity of their niche. Cold Spring Harb Symp Quant Biol. 2008;73:357–365. doi:10.1101/sqb.2008.73.019.

    Article  CAS  PubMed  Google Scholar 

  40. Wolf K, Te Lindert M, Krause M, Alexander S, Te Riet J, Willis AL, et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol. 2013;201:1069–1084. doi:10.1083/jcb.201210152.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Carrero R, Cerrada I, Lledó E, Dopazo J, García-García F, Rubio MP, et al. IL1β induces mesenchymal stem cells migration and leucocyte chemotaxis through NF-κB. Stem Cell Rev. 2012;8:905–916. doi:10.1007/s12015-012-9364-9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. He BR, Xie ST, Wu MM, Hao DJ, Yang H. Phagocytic removal of neuronal debris by olfactory ensheathing cells enhances neuronal survival and neurite outgrowth via p38MAPK activity. Mol Neurobiol. 2013;49:1501–1512. doi:10.1007/s12035-013-8588-2.

    Article  PubMed  Google Scholar 

  43. Barbour HR, Plant CD, Harvey AR, Plant GW. Tissue sparing, behavioral recovery, supraspinal axonal sparing/regeneration following sub-acute glial transplantation in a model of spinal cord contusion. BMC Neurosci. 2013;14:106. doi:10.1186/1471-2202-14-106.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Botero L, Gomez RM, Chaparro O. Pathogenesis of spinal cord injuries and mechanisms of repair induced by olfactory ensheathing cells. Rev Neurol. 2013;56:521–531.

    PubMed  Google Scholar 

  45. Chiang Y, Morales M, Zhou FC, Borlongan C, Hoffer BJ, Wang Y. Fetal intra-nigral ventral mesencephalon and kidney tissue bridge transplantation restores the nigrostriatal dopamine pathway in hemi-Parkinsonian rats. Brain Res. 2001;889:200–207. doi:10.1016/S0006-8993(00)03133-4.

    Article  CAS  PubMed  Google Scholar 

  46. Wang Y, Tien LT, Lapchak PA, Hoffer BJ. GDNF triggers fiber outgrowth of fetal ventral mesencephalic grafts from nigra to striatum in 6-OHDA-lesioned rats. Cell Tissue Res. 1996;286:225–233.

    Article  CAS  PubMed  Google Scholar 

  47. Tang FI, Tien LT, Zhou FC, Hoffer BJ, Wang Y. Intranigral ventral mesencephalic grafts and nigrostriatal injections of glial cell line-derived neurotrophic factor restore dopamine release in the striatum of 6-hydroxydopamine-lesioned rats. Exp Brain Res. 1998;119:287–296.

    Article  CAS  PubMed  Google Scholar 

  48. Borlongan CV. Cell therapy for stroke: remaining issues to address before embarking on clinical trials. Stroke. 2009;40(3 Suppl):S146–S148.

    Article  PubMed  Google Scholar 

  49. Croall ID, Cowie CJ, He J, Peel A, Wood J, Aribisala BS, Mitchell P, Mendelow AD, Smith FE, Millar D, Kelly T, Blamire AM. White matter correlates of cognitive dysfunction after mild traumatic brain injury. Neurology. 2014;83(6):494–501. doi:10.1212/WNL.0000000000000666.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Matute C, Domercq M, Pérez-Samartín A, Ransom BR. Protecting white matter from stroke injury. Stroke. 2013;44(4):1204–1211.

    Article  PubMed  Google Scholar 

  51. Sharp DJ, Ham TE. Investigating white matter injury after mild traumatic brain injury. Curr Opin Neurol. 2011;24(6):558–563. doi:10.1097/WCO.0b013e32834cd523.

    Article  PubMed  Google Scholar 

  52. dela Peña I, Pabon M, Acosta S, Sanberg PR, Tajiri N, Kaneko Y, et al. Oligodendrocytes engineered with migratory proteins as effective graft source for cell transplantation in multiple sclerosis. Cell Med. 2014; 10 6(3):123–127.

    Google Scholar 

  53. Waxman SG. Demyelination in spinal cord injury and multiple sclerosis: what can we do to enhance functional recovery? J Neurotrauma. 1992;1:S105–S117.

    Google Scholar 

Download references

Acknowledgments

This work was supported by SanBio Inc. (CVB).

Competing Interests

CVB is an inventor on a patent application related to the stem cell research reported here. CVB received research financial support from SanBio Inc. for this study. CVB is additionally supported by NIH NINDS R01NS071956-01, NIH NINDS R21 NS089851-01, and DOD W81XWH-11-1-0634.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar V. Borlongan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

De La Pena, I. et al. (2015). From Neurogenic Niche to Site of Injury: Stem Cell-Mediated Biobridge for Brain Repair. In: Turksen, K. (eds) Biology in Stem Cell Niche. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-21702-4_7

Download citation

Publish with us

Policies and ethics