Skip to main content

Designing Particulate Composites: The Effect of Variability of Filler Properties and Filler Spatial Distribution

  • Chapter
Materials with Internal Structure

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

  • 983 Accesses

Abstract

A new perspective on structural design of particulate composites is presented in this chapter. The central concept is that by controlling multiple parameters describing the stochastic microstructure, such as allowing the filler properties to vary from filler to filler, or constructing spatially correlated filler distributions, significantly expands the design space which, in turn, is likely to lead to the development of more performant composites. We investigate the effect of two such parameters on the elastic-plastic and damping behavior of the composite. First, we consider microstructures containing fillers of same properties but which are spatially distributed in a correlated way. It is observed that composites with spatially correlated filler distributions are stiffer, strain harden more and lead to larger damping ratios relative to microstructures with random, uncorrelated filler distributions of same volume fraction. In the second part of the study we consider composites in which filler properties vary from filler to filler. It is observed that the composite modulus and its strain hardening rate decrease as the variance of the probability distribution function of filler elastic constants increases, while the mean of the distribution is kept constant. The damping ratio of the composite is not sensitive to the higher moments of the distribution function of damping coefficients within inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal BD (1990) Analysis and performance of fiber composites. Wiley, New York

    Google Scholar 

  2. Reilly DT, Burstein AH (1975) The elastic and ultimate properties of compact bone tissue. J Biomech 8:393–405

    Article  Google Scholar 

  3. Barnes SJ, Harris LP (2008) Tissue engineering: roles, materials, applications. Nova, New York

    Google Scholar 

  4. Breneman CM, Brinson LC et al (2013) Stalking the materials genome: a data-driven approach to the virtual design of nanostructured polymers. Adv Funct Mater 23:5746–5752

    Article  Google Scholar 

  5. Erman B, Mark JE (1997) Structure and properties of rubber-like networks. Oxford University Press, New York

    Google Scholar 

  6. Courtney TH (1990) Mechanical behavior of materials. McGraw-Hill, New York

    Google Scholar 

  7. Nemat-Nasser S, Hori M (1999) Micromechanics: overall properties of heterogeneous materials. North-Holland, Amsterdam

    Google Scholar 

  8. Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties. Springer, New York

    Book  Google Scholar 

  9. Dvorak GJ (2013) Mechanics of composite materials. Springer, New York

    Google Scholar 

  10. Hashin Z, Shtrikman S (1962) On some variational principles in anisotropic and nonhomogeneous elasticity. J Mech Phys Solids 10:335–342

    Article  MathSciNet  Google Scholar 

  11. Beran MJ, Molyeux J (1966) Continuum theories. Wiley, New York

    Google Scholar 

  12. Silnutzer NR (1972) Effective constants of statistically homogeneous materials. PhD thesis, University of Pennsylvania, Philadelphia

    Google Scholar 

  13. Milton GW (1981) Bounds on the electromagnetic, elastic, and other properties of two-component composites. Phys Rev Lett 46:542–545

    Article  Google Scholar 

  14. Milton GW (1982) Bound on the elastic and transport properties of two component composites. J Mech Phys Solids 30:177–191

    Article  MATH  MathSciNet  Google Scholar 

  15. Phan-Tien N, Milton GW (1982) New bounds on the effective thermal conductivity of n-phase materials. Proc R Soc Lond A 380:333–348

    Article  Google Scholar 

  16. Quinatanilla J, Torquato S (1995) New bounds on the elastic moduli of suspensions of spheres. Appl Phys 77:4361–4372

    Article  Google Scholar 

  17. Oshmyan VG, Patlashan SA, Timan SA (2001) Elastic properties of Sierpinski-like carpets: finite-element-based simulation. Phys Rev E 64(056108):1–10

    Google Scholar 

  18. Salganik RL (1973) Mechanics of bodies with many cracks. Mech Solids 8:135–143

    Google Scholar 

  19. Dyskin AV (2005) Effective characteristics and stress concentrations in materials with self-similar microstructure. Int J Solids Struct 42:477–502

    Article  MATH  Google Scholar 

  20. Tarasov VE (2005) Fractional hydrodynamics equations for fractal media. Ann Phys 318:286–307

    Article  MATH  MathSciNet  Google Scholar 

  21. Tarasov VE (2005) Continuous medium model for fractal media. Phys Lett A 336:167–174

    Article  MATH  Google Scholar 

  22. Ostoja-Starzewski M (2007) Towards thermoelasticity of fractal media. J Therm Stresses 30:889–896

    Article  Google Scholar 

  23. Ostoja-Starzewski M (2009) Extremum and variational principles for elastic and inelastic media with fractal geometries. Acta Mech 205:161–170

    Article  MATH  Google Scholar 

  24. Carpinteri A, Chiaia B, Cornetti P (2004) A fractal theory for the mechanics of elastic materials. Mater Sci Eng A 365:235–240

    Article  Google Scholar 

  25. Soare MA, Picu RC (2007) An approach to solving mechanics problems for materials with multiscale self-similar microstructure. Int J Solids Struct 44:7877–7890

    Article  MATH  Google Scholar 

  26. Picu RC, Soare MA (2009) Mechanics of materials with self-similar hierarchical microstructure. In: Galvanetto U, Aliabadi MF (eds) Multiscale modeling in solid mechanics—computational approaches. Imperial College Press, London, pp 295–332

    Chapter  Google Scholar 

  27. Kolwankar KM, Gangal AD (1996) Fractional differentiability of nowhere differentiable functions and dimensions. Chaos 6:505–524

    Article  MATH  MathSciNet  Google Scholar 

  28. Kolwankar KM (1998) Studies of fractal structures and processes using methods of fractional calculus. PhD thesis, University of Pune, India

    Google Scholar 

  29. Picu RC, Li Z et al (2014) Composites with fractal microstructure: the effect of long range correlations on the elastic-plastic and damping behavior. Mech Mater 69:251–261

    Article  Google Scholar 

  30. Papadrakakis M, Papadopoulos V (1996) Robust and efficient methods for stochastic finite element analysis using Monte Carlo simulations. Comput Methods Appl Mech Eng 134:325–340

    Article  MATH  MathSciNet  Google Scholar 

  31. Liu WK, Belytschko T, Mani A (1986) Probabilistic finite elements for nonlinear structural dynamics. Comput Methods Appl Mech Eng 56:61–81

    Article  MATH  Google Scholar 

  32. Liu WK, Mani A, Belytschko T (1987) Finite element methods in probabilistic mechanics. Probab Eng Mech 2:201–213

    Article  Google Scholar 

  33. Ghanem G, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer, New York

    Book  MATH  Google Scholar 

  34. Ghanem R, Dham S (1998) Stochastic finite element analysis for multiphase flow in heterogeneous porous media. Transp Porous Media 32:239–262

    Article  MathSciNet  Google Scholar 

  35. Matthies HG, Brenner CE, Bucher CG, Soares CG (1997) Uncertainties in probabilistic numerical analysis of structures and solids—stochastic finite elements. Struct Saf 19:283–336

    Article  Google Scholar 

  36. Soare MA, Picu RC (2008) Boundary value problems defined on stochastic self-similar multiscale geometries. Int J Numer Methods Eng 74:668–696

    Article  MATH  MathSciNet  Google Scholar 

  37. Soare MA, Picu RC (2008) Spectral decomposition of random fields defined over the generalized Cantor set. Chaos Solitons Fractals 37:566–573

    Article  MATH  MathSciNet  Google Scholar 

  38. Matthies HG, Keese A (2005) Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput Methods Appl Mech Eng 194:1295–1331

    Article  MATH  MathSciNet  Google Scholar 

  39. Cameron RH, Martin WT (1947) The orthogonal development of nonlinear functionals in series of Fourier–Hermite functionals. Ann Math 48:385–392

    Article  MATH  MathSciNet  Google Scholar 

  40. Wiener N (1958) Nonlinear problems in random theory. Technology Press of the Massachusetts Institute of Technology and Wiley, New York

    MATH  Google Scholar 

  41. Karhunen K (1947) Uber lineare methoden in der wahrscheinlicheitsrechtung. American Academy of Science Fennicade, Ser.A.I 37:3–79 (Translation: RAND Corporation, Santa Monica, CA, Report T-131, 1960)

    Google Scholar 

  42. Loeve M (1948) Fonctions aleatoires du second ordre. Suplement to P. Levy, Processus Stochastic et Mouvement Brownien. Gauthier-Villars, Paris

    Google Scholar 

  43. Gel’fand IM, Vilnekin NY (1964) Generalized functions, vol 4. Academic, New York

    MATH  Google Scholar 

  44. Ban E, Picu RC, Barocas V, Shephard MS (2015) Effect of variability of fiber properties on mechanical behavior of composite fiber networks. Phys Rev B (Submitted to JMPS)

    Google Scholar 

Download references

Acknowledgments

This work has been supported in part by the Romanian National Authority for Scientific Research, CNCS–UEFISCDI, project number PN-II-ID-PCE-2011-3-0120, under contract 293/2011.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Catalin R. Picu or Monica A. Soare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Picu, C.R., Sorohan, S., Soare, M.A., Constantinescu, D.M. (2016). Designing Particulate Composites: The Effect of Variability of Filler Properties and Filler Spatial Distribution. In: Trovalusci, P. (eds) Materials with Internal Structure. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-21494-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21494-8_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21493-1

  • Online ISBN: 978-3-319-21494-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics