Skip to main content

Microstructure Sensitive Fatigue Crack Nucleation in Titanium Alloys Using Accelerated Crystal Plasticity FE Simulations

  • Chapter
Materials with Internal Structure

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

  • 1093 Accesses

Abstract

This chapter investigates microstructure and load sensitive fatigue behavior of Ti-6242 using cyclic crystal plasticity finite element (CPFE) simulations of statistically equivalent image-based microstructures. A wavelet transformation induced multi-time scaling (WATMUS) method (Joseph et al., Comput Methods Appl Mech Eng 199:2177–2194, 2010; Chakraborty et al., Finite Elem Anal Des 47:610–618, 2011; Chakraborty and Ghosh, Int J Numer Methods Eng 93:1425–1454, 2013; Ghosh and Chakraborty, Int J Fatigue 48:231–246, 2013) is used to perform accelerated cyclic CPFE simulations till crack nucleation, otherwise infeasible using conventional time integration schemes. A physically motivated crack nucleation model in terms of crystal plasticity variables (Anahid et al., J Mech Phys Solids 59(10):2157–2176, 2011) is extended in this work to predict nucleation. The dependence of yield strength on the underlying grain orientations and sizes is developed through the introduction of an effective microstructural parameter Plastic Flow Index or PFI. To determine the effects of the microstructure on crack nucleation, a local microstructural variable is defined in terms of the surface area fraction of soft grains surrounding each hard grain or SAFSSG. Simulations with different cyclic load patterns suggest that fatigue crack nucleation in Ti-6242 strongly depends on the dwell cycle hold time at maximum stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anahid M, Samal MK, Ghosh S (2011) Dwell fatigue crack nucleation model based on crystal plasticity finite element simulations of polycrystalline Titanium alloys. J Mech Phys Solids 59(10):2157–2176

    Article  MATH  Google Scholar 

  2. Bache MR (2003) A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions. Int J Fatigue 25:1079–1087

    Article  Google Scholar 

  3. Bridiera F, McDowell DL, Villechaisea P, Mendeza J (2009) Crystal plasticity modeling of slip activity in Ti-6Al-4V under high cycle fatigue loading. Int J Plast 25:1066–1082

    Article  Google Scholar 

  4. Chakraborty P, Ghosh S (2013) Accelerating cyclic plasticity simulations using an adaptive wavelet transformation based multi-time scaling method. Int J Numer Methods Eng 93:1425–1454

    Article  MathSciNet  Google Scholar 

  5. Chakraborty P, Joseph DS, Ghosh S (2011) Wavelet transformation based multi-time scale crystal plasticity FEM for cyclic deformation in titanium alloys under dwell load. Finite Elem Anal Des 47:610–618

    Article  MathSciNet  Google Scholar 

  6. Deka D, Joseph DS, Ghosh S, Mills MJ (2006) Crystal plasticity modeling of deformation and creep in polycrystalline Ti-6242. Metall Trans A 37(5):1371–1388

    Article  Google Scholar 

  7. Ghosh S, Chakraborty P (2013) Microstructure and load sensitive fatigue crack nucleation in Ti-6242 using accelerated crystal plasticity FEM simulations. Int J Fatigue 48:231–246

    Article  Google Scholar 

  8. Goh CH, Wallace JM, Neu RW, McDowell DL (2001) Polycrystal plasticity simulations of fretting fatigue. Int J Fatigue 23:5423–5435

    Article  Google Scholar 

  9. Groeber M, Ghosh S, Uchic MD, Dimiduk DM (2008) A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 1: statistical characterization. Acta Mater 56:1257–1273

    Article  Google Scholar 

  10. Groeber M, Ghosh S, Uchic MD, Dimiduk DM (2008) A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 2: synthetic structure generation. Acta Mater 56:1274–1287

    Article  Google Scholar 

  11. Hasija V, Ghosh S, Mills MJ, Joseph DS (2003) Modeling deformation and creep in Ti-6Al alloys with experimental validation. Acta Mater 51:4533–4549

    Article  Google Scholar 

  12. Joseph DS, Chakraborty P, Ghosh S (2010) Wavelet transformation based multi-time scaling for crystal plasticity FE simulations under cyclic loading. Comput Methods Appl Mech Eng 199:2177–2194

    Article  MATH  Google Scholar 

  13. McDowell D, Dunne FPE (2010) Microstructure-sensitive computational modeling of fatigue crack formation. Int J Fatigue 32:1521–1542

    Article  Google Scholar 

  14. Mineur M, Villechaise P, Mendeza J (2000) Influence of the crystalline texture on the fatigue behavior of a 316L austenitic stainless steel. Mater Sci Eng A 286:257–268

    Article  Google Scholar 

  15. Sackett EE, Germain L, Bache MR (2007) Crystal plasticity, fatigue crack initiation and fatigue performance of advanced titanium alloys. Int J Fatigue 29:2015–2021

    Article  MATH  Google Scholar 

  16. Sinha S, Ghosh S (2006) Modeling cyclic ratcheting based fatigue life of HSLA steels using crystal plasticity FEM simulations and experiments. Int J Fatigue 28:1690–1704

    Article  Google Scholar 

  17. Sinha V, Mills MJ, Williams JC (2004) Understanding the contributions of normal-fatigue and static loading to the dwell fatigue in a near-alpha titanium alloy. Metall Mater Trans A 35:3141–3148

    Article  Google Scholar 

  18. Stroh AN (1954) The formation of cracks as a result of plastic flow. Proc R Soc Lond Ser A 223:404–414

    Article  MATH  MathSciNet  Google Scholar 

  19. Venkatramani G, Ghosh S, Mills MJ (2007) A size-dependent crystal plasticity finite element model for creep and load-shedding in polycrystalline Titanium alloys. Acta Mater 55:3971–3986

    Article  Google Scholar 

  20. Williams JC (2006) The evaluation of cold dwell fatigue in Ti-6242. FAA report. The Ohio State University

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Air Force Office of Scientific through a grant FA9550-13-1-0062 (Program Manager: Dr. David Stargel) and by the National Science Foundation, Mechanics and Structure of Materials Program through Grant No. CMMI-1100818 (Program Manager: Dr. Thomas Siegmund). This sponsorship is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somnath Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ghosh, S., Chakraborty, P. (2016). Microstructure Sensitive Fatigue Crack Nucleation in Titanium Alloys Using Accelerated Crystal Plasticity FE Simulations. In: Trovalusci, P. (eds) Materials with Internal Structure. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-21494-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21494-8_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21493-1

  • Online ISBN: 978-3-319-21494-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics