Skip to main content

Heusler Compounds Go Nano

  • Chapter
  • First Online:
Heusler Alloys

Abstract

This chapter is addressing the physical impact of ferromagnetic Heusler entities when approaching the nanoscale, e.g. as nanoparticles or as very small grains in magnetic shape Heusler alloys, on resulting magnetic as well as microstructural properties. Based on the soft magnetic behavior of Co\(_{2}\)FeGa and Co\(_{2}\)FeSi as two representatives of the full Heusler family their superparamagnetic potential is projected to applications in biotechnology. These applications can now be pictured due to the progress which has been made in synthesizing Heusler nanoparticles. Taken Co\(_{2}\)FeGa as a candidate the chemical preparation avenue to achieve nanoparticles with reliable physical properties is demonstrated leading to a nanoparticular GMR-effect. It is shown that magnetic nanoparticles can be embedded in agarose as a biogel when employing external magnetic fields so as to configure the nanoparticle arrangements for optimizing the GMR-effect. Possible consequences in case of a nanoparticular TMR-effect are pictured. The very small grain size in magnetic shape Heusler alloys is determining the austenite-martensite transformation in ultra-thin films which might play a major role for spintronic applications also bridging two research field in addition. The principle microstructural influences on the austenite-martensite transformation in thin films are discussed in terms of epitaxial growth, phase compatibility, crystal quality and size scale effects. Thereafter, details concerning the martensitic transformation in a film thickness range from 10 to 100 nm are discussed for two off-stoichiometric NiMnSn Heusler compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Graf, C. Felser, S.S.P. Parkin, Prog. Solid State Chem. 39, 1 (2011)

    Article  Google Scholar 

  2. R. de Groot, F. Mueller, P. van Engen, K. Buschow, Phys. Rev. Lett. 50, 2024 (1983)

    Article  Google Scholar 

  3. J. Tobola, J. Pierre, S. Kaprzyk, R.V. Skolozdra, M.A. Kounacou, J. Phys.: Condens. Matter 10, 1013 (1998)

    Google Scholar 

  4. J. Tobola, J. Pierre, J. Alloys Compd. 296, 243 (2000)

    Article  Google Scholar 

  5. I. Galanakis, P.H. Dederichs, N. Papanikolaou, Phys. Rev. B 66, 134428 (2002)

    Article  Google Scholar 

  6. S. Ishida, T. Masaki, S. Fujii, S. Asano, Physica B 245, 1 (1998)

    Article  Google Scholar 

  7. A. Ayuela, J. Enkovaara, K. Ullakko, R.M. Nieminen, J. Phys.: Condens. Matter 11, 2017 (1999)

    Google Scholar 

  8. A. Deb, Y. Sakurai, J. Phys.: Condens. Matter 12, 2997 (2000)

    Google Scholar 

  9. I. Galanakis, P.H. Dederichs, N. Papanikolaou, Phys. Rev. B 66, 174429 (2002)

    Article  Google Scholar 

  10. C.T. Tanaka, J. Nowak, J.S. Moodera, J. Appl. Phys. 86, 6239 (1999)

    Article  Google Scholar 

  11. S. Yuasa, T. Nagahama1 A. Fukushima, Y. Suzuki, K. Ando. Nat. Mater. 3, 868 (2004)

    Google Scholar 

  12. S.S. Parkin, C. Kaiser, A. Panchula, P.M. Rice, B. Hughes, M. Samant, S.H. Yang, Nat. Mater. 3, 862 (2004)

    Article  Google Scholar 

  13. J. Rogge, P. Hedwig, C. Sterwerf, A. Hütten, IEEE Trans. Magn. 48, 3825 (2012)

    Article  Google Scholar 

  14. R.C. O‘Handley, Modern Magnetic Materials: Principles and Applications (Wiley, New York, 2000)

    Google Scholar 

  15. S. Trudel, O. Gaier, J. Harmle, B. Hillebrands, J. Phys. D. Appl. Phys. 43, 193001 (2010)

    Article  Google Scholar 

  16. M. Hashimoto, J. Herget, H.-P. Schönherr, K.H. Ploog, Appl. Phys. Lett. 87, 102506 (2005)

    Google Scholar 

  17. C. Wang, L. Basit, Y. Khalavka, Y. guo, F. Casper, T. Gasi, V. Ksenofontov, B. Balke, G.H. Fecher, C. Sönnichen, Y.-K. Hwu, J.-J. Lee, C. Felser. Chem. Mater. 22, 6575 (2010)

    Google Scholar 

  18. A. Hütten, D. Sudfeld, K. Wojczykowski, P. Jutzi, G. Reiss, J. Magn. Magn. Mater. 262, 23 (2003)

    Article  Google Scholar 

  19. M.B. Stearns, Y. Cheng, J. Appl. Phys. 75, 6894 (1994)

    Article  Google Scholar 

  20. D.J. Sellmyer, C.P. Luo, Y.Qiang, Handbook of Thin Film Devices Magnetic, 5 , Nanomaterials And Magnetic Thin Films, vol 37 (Academic Press, New York, 2000)

    Google Scholar 

  21. N. Dahal, V. Chikan, Chem. Mater. 22, 2892 (2010)

    Article  Google Scholar 

  22. Y.D. Wang, Y. Ren, H.Z. Nie, D.M. Liu, L. Zuo, H. Choo, H. Li, P.K. Liaw, J.Q. Yan, R.J. Mcqueeney, J.W. Richardson, A. Huq, J. Appl. Phys. 101, 063530 (2007)

    Article  Google Scholar 

  23. Y. Jing, Y.H. Xu, J.P. Wang, J. Appl. Phys. 105, 07B520 (2009)

    Google Scholar 

  24. L. Basit et al., J. Phys. D Appl. Phys. 42, 084018 (2009)

    Google Scholar 

  25. C. Wang et al., Chem. Mater. 22, 6575–6582 (2012)

    Article  Google Scholar 

  26. C.H. Wang, Y.Z. Guo, F. Casper, B. Balke, G.H. Fecher, C. Felser, Y. Hwu, Appl. Phys. Lett. 97, 103106 (2010)

    Article  Google Scholar 

  27. K.H.J. Buschow, P.G. van Engen, J. Magn. Magn. Mater. 25, 90–6 (1981)

    Google Scholar 

  28. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, Phys. Rev. Lett. 61(21), 2472–2475 (1988)

    Article  Google Scholar 

  29. G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Phys. Rev. B 39(7), 4828–4830 (1989)

    Article  Google Scholar 

  30. A.E. Berkowitz, J.R. Mitchell, M.J. Carey, A.P. Young, S. Zhang, F.E. Spada, F.T. Parker, A. Hütten, G. Thomas, Phys. Rev. Lett. 68(25), 3745–3748 (1992)

    Article  Google Scholar 

  31. J.Q. Xiao, J. Samuel Jiang, C.L. Chien, Phys. Rev. Lett. 68(25), 3749–3752 (1992)

    Google Scholar 

  32. J. Meyer, T. Rempel, M. Schäfers, F. Wittbracht, C. Müller, A.V. Patel, A. Hütten, Smart Mater. Struct. 22, 025032 (2013) (accepted for publication)

    Google Scholar 

  33. A. Weddemann et al., Beilstein J. Nanotechnol. 1, 75–93 (2010)

    Article  Google Scholar 

  34. C. Wang, J. Meyer, N. Teichert, A. Auge, E. Rausch, B. Balke, A. Hütten, G.H. Fecher, C. Felser, J. Vac. Sci. Technol. B 32(2), 020802 (2014)

    Article  Google Scholar 

  35. P. Allia, Phys. Rev. B 52, 15398 (1995)

    Article  Google Scholar 

  36. Y. Chen, J. Appl. Phys. A 73, 103–106 (2001)

    Article  Google Scholar 

  37. H. Fujimori, S. Mitani, S. Ohnuma, J. Magn. Magn. Mater. 156, 311–314 (1996)

    Article  Google Scholar 

  38. J. Inoue, S. Maekawa, Phys. Rev. B 53(18), R11 927 (1996)

    Google Scholar 

  39. M. Holdenried, B. Hackenbroich, H. Micklitz, J. Magn. Magn. Mater. 231, L13–L19 (2001)

    Article  Google Scholar 

  40. B. Winzek, S. Schmitz, H. Rumpf., T. Sterzl, R. Hassdorf, S. Thienhaus, J. Feydt, M. Moskeand E. Quandt. Mater. Sci. Eng. A 378, 40 (2004)

    Google Scholar 

  41. D.C. Dunand, P. Müllner, Adv. Mater. 23, 216 (2011)

    Article  Google Scholar 

  42. G. Malygin, Tech. Phys. 54, 1782 (2009)

    Article  Google Scholar 

  43. A. Roytburd, T. Kim, Q. Su, J. Slutsker, M. Wuttig, Acta Mater. 46, 5095 (1998)

    Article  Google Scholar 

  44. K. Bhattacharya, Microstructure of Martensite, (Oxford University Press, Oxford, 2003)

    Google Scholar 

  45. S. Kaufmann, R. Niemann, T. Thersleff, U.K. Rösler, O. Heczko, J. Buschbeck, B. Holzapfel, L. Schultz, S. Fähler, New J. Phys. 13, 053029 (2011)

    Article  Google Scholar 

  46. G. Jakob, H.J. Elmers, J. Magn. Magn. Mater 310, 2779 (2007)

    Article  Google Scholar 

  47. J.W. Dong, L.C. Chen, C.J. Palmstrøm, R.D. James, S. McKernan. Appl. Phys. Lett. 75, 1443 (1999)

    Google Scholar 

  48. S. Kaufmann, U. Rößler, O. Heczko, M. Wuttig, J. Buschbeck, L. Schultz, S. Fähler, Phys. Rev. Lett. 104, 145702 (2010)

    Article  Google Scholar 

  49. M. Thomas, O. Heczko, J. Buschbeck, U.K. Rößler, J. McCord, N. Scheerbaum, L. Schultz, S. Fähler, New J. Phys. 10, 023040 (2008)

    Article  Google Scholar 

  50. G. Malygin, Phys. Solid State 45, 345 (2003)

    Article  Google Scholar 

  51. G. Malygin, Phys. Solid State 45, 1566 (2003)

    Article  Google Scholar 

  52. A. Potekaev, A. Klopotov, V. Kulagina, V. Gyunter, Steel Transl. 40, 881 (2010)

    Article  Google Scholar 

  53. B. Li, X.M. Zhang, P.C. Clapp, J.A. Rifkin, J. Appl. Phys. 95, 1698 (2004)

    Article  Google Scholar 

  54. M. Ohring, Materials Science of Thin Films, (Academic Press, New York, 2001)

    Google Scholar 

  55. O. Meng, Y. Rong, T.Y. Hsu, Phys. Rev. B 65, 174118 (2002)

    Article  Google Scholar 

  56. R. Vishnoi, R. Singhal, D. Kaur, J. Nanopart. Res. 13, 3975 (2011)

    Article  Google Scholar 

  57. P. Ranzieri, S. Fabbrici, L. Nasi, L. Righi, F. Casoli, V.A. Chernenko, E. Villa, F. Albertini, Acta Mater. 61, 263 (2013)

    Article  Google Scholar 

  58. V. Recarte, J.I. Pérez-Landazábal, V. Sánchez-Alárcos, V.A. Chernenko, M. Ohtsuka, Appl. Phys. Lett. 95, 141908 (2009)

    Article  Google Scholar 

  59. R. Vishnoi, D. Kaur, Surf. Coat. Technol. 204, 3773 (2010)

    Article  Google Scholar 

  60. R. Niemann, O. Heczko, L. Schultz, S. Fähler, Appl. Phys. Lett. 97, 222507 (2010)

    Article  Google Scholar 

  61. K. Załęski, J. Dubowik, I. Gościańska, B. Andrzejewskiand, T. Toliński, Cent. Eur. J. Phys. 9, 558 (2011)

    Google Scholar 

  62. A. Auge, N. Teichert, M. Meinert, G. Reiss, A. Hütten, E. Yüzüak, İ. Dinçer, Y. Elerman, Phys. Rev. B. 85, 214118 (2012)

    Article  Google Scholar 

  63. N. Teichert, A. Auge, E. Yüzüak, I. Dincer, Y. Elerman, B. Krumme, H. Wende, O. Yildirim, K. Potzger, A. Hütten, Acta Mater. 86, 279 (2015)

    Article  Google Scholar 

  64. J. Tillier, D. Bourgault, B. Barbara, S. Pairis, L. Porcar, P. Chometon, D. Dufeu, N. Caillault, L.J. Carbone, Alloys Comp. 489, 509 (2010)

    Article  Google Scholar 

  65. A. Backen, S.R. Yeduru, M. Kohl, S. Baunack, A. Diestel, B. Holzapfel, L. Schultz, S. Fähler, Acta Mater. 58, 3415 (2010)

    Article  Google Scholar 

  66. M. Thomas, O. Heczko, J. Buschbeck, Y.W. Lai, J. McCord, S. Kaufmann, L. Schultz, S. Fähler, Adv. Mater. 21, 3708 (2009)

    Article  Google Scholar 

  67. C.A. Jenkins, R. Ramesh, M. Huth, T. Eichhorn, P. Pörsch, H.J. Elmers, G. Jakob, Appl. Phys. Lett. 93, 234101 (2008)

    Google Scholar 

Download references

Acknowledgments

The authors affiliated with Bielefeld University would like to thank the FOR 945, the SPP 1599, and International Office of BMBF for financial support in the framework of the project 3, A6 and TUR09/I01, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Hütten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meyer, J., Teichert, N., Auge, A., Wang, C., Hütten, A., Felser, C. (2016). Heusler Compounds Go Nano. In: Felser, C., Hirohata, A. (eds) Heusler Alloys. Springer Series in Materials Science, vol 222. Springer, Cham. https://doi.org/10.1007/978-3-319-21449-8_5

Download citation

Publish with us

Policies and ethics