Skip to main content

Current Techniques and Future Directions for Fetal MRI

  • Chapter
MRI of Fetal and Maternal Diseases in Pregnancy
  • 1894 Accesses

Abstract

The widespread application of modern MRI techniques to the live fetus in utero is an evolving endeavor, contingent on ongoing improvement in hardware and software. At present, all major MRI techniques, including structural MRI imaging, diffusion weighted imaging (DWI), magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), and functional MRI, have been adapted for studies of the maternal–fetal unit with varying degrees of success. Issues affecting adaptation of MRI techniques to fetal imaging include safety, fetal motion, and the small but changing size, anatomy, and composition of the fetal organs. Consequently, clinical and research studies employing MRI techniques of the maternal–fetal unit are performed during the second and third trimester, eschewing the use of contrast (gadolinium) agents. Fetal movement is currently addressed by using multiple acquisitions with ultrafast sequences, to which T2-weighted imaging is most amenable. The changing landscape of fetal size and tissue compositions requires adaptation of the field of view and sequence parameters to the age of the fetus for best contrast and resolution in anatomical as well as physiological (DWI) and biochemical (MRS) imaging techniques. Techniques requiring longer acquisition times and thus more sensitive to fetal motion, such as MRS, DTI, and fMRI, are used mostly in the research setting. Future expansion of fetal MRI applications relies on the adaptation of 3D acquisition, automated motion correction, and volumetry as well as the establishment of multiple normative databases of fetal development parameters for each gestational week.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson AL, Thomason ME (2013) Functional plasticity before the cradle: a review of neural functional imaging in the human fetus. Neurosci Biobehav Rev 37:2220–2232

    Article  PubMed  Google Scholar 

  2. Azpurua H, Alvarado A, Mayobre F, Salom T, Copel JA, Guevara-Zuloaga F (2008) Metabolic assessment of the brain using proton magnetic resonance spectroscopy in a growth-restricted human fetus: case report. Am J Perinatol 25:305–309

    Article  PubMed  Google Scholar 

  3. Baker PN, Johnson IR, Harvey PR, Gowland PA, Mansfield P (1994) A three-year follow-up of children imaged in utero with echo-planar magnetic resonance. Am J Obstet Gynecol 170:32–33

    Article  CAS  PubMed  Google Scholar 

  4. Baldoli C, Righini A, Parazzini C, Scotti G, Triulzi F (2002) Demonstration of acute ischemic lesions in the fetal brain by diffusion magnetic resonance imaging. Ann Neurol 52:243–246

    Article  PubMed  Google Scholar 

  5. Baysinger CL (2010) Imaging during pregnancy. Anesth Analg 110:863–867

    Article  PubMed  Google Scholar 

  6. Bonel H, Frei KA, Raio L, Meyer-Wittkopf M, Remonda L, Wiest R (2008) Prospective navigator-echo-based real-time triggering of fetal head movement for the reduction of artifacts. Eur Radiol 18:822–829

    Article  CAS  PubMed  Google Scholar 

  7. Boyer AC, Goncalves LF, Lee W, Shetty A, Holman A, Yeo L, Romero R (2013) Magnetic resonance diffusion-weighted imaging: reproducibility of regional apparent diffusion coefficients for the normal fetal brain. Ultrasound Obstet Gynecol 41:190–197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Bui T, Daire JL, Chalard F, Zaccaria I, Alberti C, Elmaleh M, Garel C, Luton D, Blanc N, Sebag G (2006) Microstructural development of human brain assessed in utero by diffusion tensor imaging. Pediatr Radiol 36:1133–1140

    Article  PubMed  Google Scholar 

  9. Busse RF, Riederer SJ, Fletcher JG, Bharucha AE, Brandt KR (2000) Interactive fast spin-echo imaging. Magn Reson Med 44:339–348

    Article  CAS  PubMed  Google Scholar 

  10. Cannie M, De Keyzer F, Meersschaert J, Jani J, Lewi L, Deprest J, Dymarkowski S, Demaerel PA (2007) Diffusion-weighted template for gestational age-related apparent diffusion coefficient values in the developing fetal brain. Ultrasound Obstet Gynecol 30:318–324

    Article  CAS  PubMed  Google Scholar 

  11. Cartry C, Viallon V, Hornoy P, Adamsbaum C (2010) Diffusion-weighted MR imaging of the normal fetal brain: marker of fetal brain maturation. J Radiol 91:561–566

    Article  CAS  PubMed  Google Scholar 

  12. Cetin I, Barberis B, Brusati V, Brighina E, Mandia L, Arighi A, Radaelli T, Biondetti P, Bresolin N, Pardi G, Rango M (2011) Lactate detection in the brain of growth-restricted fetuses with magnetic resonance spectroscopy. Am J Obstet Gynecol 205(350):e1–e7

    PubMed  Google Scholar 

  13. Chung HW, Chen CY, Zimmerman RA, Lee KW, Lee CC, Chin SC (2000) T2-Weighted fast MR imaging with true FISP versus HASTE: comparative efficacy in the evaluation of normal fetal brain maturation. AJR Am J Roentgenol 175:1375–1380

    Article  CAS  PubMed  Google Scholar 

  14. Clements H, Duncan KR, Fielding K, Gowland PA, Johnson IR, Baker PN (2000) Infants exposed to MRI in utero have a normal paediatric assessment at 9 months of age. Br J Radiol 73:190–194

    Article  CAS  PubMed  Google Scholar 

  15. Clouchoux C, Du Plessis AJ, Bouyssi-Kobar M, Tworetzky W, Mcelhinney DB, Brown DW, Gholipour A, Kudelski D, Warfield SK, Mccarter RJ, Robertson RL Jr, Evans AC, Newburger JW, Limperopoulos C (2013) Delayed cortical development in fetuses with complex congenital heart disease. Cereb Cortex 23:2932–2943

    Article  CAS  PubMed  Google Scholar 

  16. Clouchoux C, Kudelski D, Gholipour A, Warfield SK, Viseur S, Bouyssi-Kobar M, Mari JL, Evans AC, Du Plessis AJ, Limperopoulos C (2012) Quantitative in vivo MRI measurement of cortical development in the fetus. Brain Struct Funct 217:127–139

    Article  PubMed  Google Scholar 

  17. Corbett-DETIG J, Habas PA, Scott JA, Kim K, Rajagopalan V, Mcquillen PS, Barkovich AJ, Glenn OA, Studholme C (2011) 3D global and regional patterns of human fetal subplate growth determined in utero. Brain Struct Funct 215:255–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Daffos F, Forestier F, Mac Aleese J, Aufrant C, Mandelbrot L, Cabanis EA, Iba-Zizen MT, Alfonso JM, Tamraz J (1988) Fetal curarization for prenatal magnetic resonance imaging. Prenat Diagn 8:312–314

    Article  CAS  PubMed  Google Scholar 

  19. Damodaram MS, Story L, Eixarch E, Patkee P, Patel A, Kumar S, Rutherford M (2012) Foetal volumetry using magnetic resonance imaging in intrauterine growth restriction. Early Hum Dev 88(Suppl 1):S35–S40

    Article  PubMed  Google Scholar 

  20. De Wilde JP, Rivers AW, Price DL (2005) A review of the current use of magnetic resonance imaging in pregnancy and safety implications for the fetus. Prog Biophys Mol Biol 87:335–353

    Article  PubMed  Google Scholar 

  21. Erdem G, Celik O, Hascalik S, Karakas HM, Alkan A, Firat AK (2007) Diffusion-weighted imaging evaluation of subtle cerebral microstructural changes in intrauterine fetal hydrocephalus. Magn Reson Imaging 25:1417–1422

    Article  PubMed  Google Scholar 

  22. Fulford J, Vadeyar SH, Dodampahala SH, Moore RJ, Young P, Baker PN, James DK, Gowland PA (2003) Fetal brain activity in response to a visual stimulus. Hum Brain Mapp 20:239–245

    Article  PubMed  Google Scholar 

  23. Fulford J, Vadeyar SH, Dodampahala SH, Ong S, Moore RJ, Baker PN, James DK, Gowland P (2004) Fetal brain activity and hemodynamic response to a vibroacoustic stimulus. Hum Brain Mapp 22:116–121

    Article  PubMed  Google Scholar 

  24. Garel C, Chantrel E, Elmaleh M, Brisse H, Sebag G (2003) Fetal MRI: normal gestational landmarks for cerebral biometry, gyration and myelination. Childs Nerv Syst 19:422–425

    Article  PubMed  Google Scholar 

  25. Garel C, Sebag G, Brisse H, Elmaleh M, Oury JF, Hassan M (1996) Magnetic resonance imaging of the fetus. Contribution to antenatal diagnosis. Presse Med 25:452–456

    CAS  PubMed  Google Scholar 

  26. Gholipour A, Estroff JA, Barnewolt CE, Connolly SA, Warfield SK (2011) Fetal brain volumetry through MRI volumetric reconstruction and segmentation. Int J Comput Assist Radiol Surg 6:329–339

    Article  PubMed Central  PubMed  Google Scholar 

  27. Girard N, Gire C, Sigaudy S, Porcu G, D’ercole C, Figarella-Branger D, Raybaud C, Confort-Gouny S (2003) MR imaging of acquired fetal brain disorders. Childs Nerv Syst 19:490–500

    Article  PubMed  Google Scholar 

  28. Girard N, Fogliarini C, Viola A, Confort-Gouny S, Fur YL, Viout P, Chapon F, Levrier O, Cozzone P (2006) MRS of normal and impaired fetal brain development. Eur J Radiol 57:217–225

    Article  PubMed  Google Scholar 

  29. Girard N, Gouny SC, Viola A, Le Fur Y, Viout P, Chaumoitre K, D’ercole C, Gire C, Figarella-Branger D, Cozzone PJ (2006) Assessment of normal fetal brain maturation in utero by proton magnetic resonance spectroscopy. Magn Reson Med 56:768–775

    Article  PubMed  Google Scholar 

  30. Gong QY, Roberts N, Garden AS, Whitehouse GH (1998) Fetal and fetal brain volume estimation in the third trimester of human pregnancy using gradient echo MR imaging. Magn Reson Imaging 16:235–240

    Article  CAS  PubMed  Google Scholar 

  31. Griffiths PD, Jarvis D, Mcquillan H, Williams F, Paley M, Armitage P (2013) MRI of the foetal brain using a rapid 3D steady-state sequence. Br J Radiol 86:20130168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Grossman R, Hoffman C, Mardor Y, Biegon A (2006) Quantitative MRI measurements of human fetal brain development in utero. Neuroimage 33:463–470

    Article  PubMed  Google Scholar 

  33. Habas PA, Kim K, Corbett-Detig JM, Rousseau F, Glenn OA, Barkovich AJ, Studholme C (2010) A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation. Neuroimage 53:460–470

    Article  PubMed Central  PubMed  Google Scholar 

  34. Habas PA, Kim K, Rousseau F, Glenn OA, Barkovich AJ, Studholme C (2010) Atlas-based segmentation of developing tissues in the human brain with quantitative validation in young fetuses. Hum Brain Mapp 31:1348–1358

    Article  PubMed Central  PubMed  Google Scholar 

  35. Habas PA, Scott JA, Roosta A, Rajagopalan V, Kim K, Rousseau F, Barkovich AJ, Glenn OA, Studholme C (2012) Early folding patterns and asymmetries of the normal human brain detected from in utero MRI. Cereb Cortex 22:13–25

    Article  PubMed Central  PubMed  Google Scholar 

  36. Hawkes RC, Holland GN, Moore WS, Worthington BS (1980) Nuclear magnetic resonance (NMR) tomography of the brain: a preliminary clinical assessment with demonstration of pathology. J Comput Assist Tomogr 4:577–586

    Article  CAS  PubMed  Google Scholar 

  37. Heerschap A, Kok RD, Van Den Berg PP (2003) Antenatal proton MR spectroscopy of the human brain in vivo. Childs Nerv Syst 19:418–421

    Article  PubMed  Google Scholar 

  38. Hoffmann C, Grossman R, Bokov I, Lipitz S, Biegon A (2010) Effect of cytomegalovirus infection on temporal lobe development in utero: quantitative MRI studies. Eur Neuropsychopharmacol 20:848–854

    Article  CAS  PubMed  Google Scholar 

  39. Hoffmann C, Weisz B, Lipitz S, Yaniv G, Katorza E, Bergman D, Biegon A (2014) Regional apparent diffusion coefficient values in 3rd trimester fetal brain. Neuroradiology 56:561–567

    Article  PubMed  Google Scholar 

  40. Hogan BA, Brown CJ, Brown JA (2008) Cecal volvulus in pregnancy: report of a case and review of the safety and utility of medical diagnostic imaging in the assessment of the acute abdomen during pregnancy. Emerg Radiol 15:127–131

    Article  PubMed  Google Scholar 

  41. Holland GN, Hawkes RC, Moore WS (1980) Nuclear magnetic resonance (NMR) tomography of the brain: coronal and sagittal sections. J Comput Assist Tomogr 4:429–433

    Article  CAS  PubMed  Google Scholar 

  42. Hu HH, Hung CI, Wu YT, Chen HY, Hsieh JC, Guo WY (2011) Regional quantification of developing human cortical shape with a three-dimensional surface-based magnetic resonance imaging analysis in utero. Eur J Neurosci 34:1310–1319

    Google Scholar 

  43. Huppi PS (2011) Cortical development in the fetus and the newborn: advanced MR techniques. Top Magn Reson Imaging 22:33–38

    Article  PubMed  Google Scholar 

  44. Huppi PS, Dubois J (2006) Diffusion tensor imaging of brain development. Semin Fetal Neonatal Med 11:489–497

    Article  PubMed  Google Scholar 

  45. Hykin J, Moore R, Duncan K, Clare S, Baker P, Johnson I, Bowtell R, Mansfield P, Gowland P (1999) Fetal brain activity demonstrated by functional magnetic resonance imaging. Lancet 354:645–646

    Article  CAS  PubMed  Google Scholar 

  46. Jansz MS, Seed M, Van Amerom JF, Wong D, Grosse-Wortmann L, Yoo SJ, Macgowan CK (2010) Metric optimized gating for fetal cardiac MRI. Magn Reson Med 64:1304–1314

    Article  PubMed  Google Scholar 

  47. Jardri R, Houfflin-Debarge V, Delion P, Pruvo JP, Thomas P, Pins D (2012) Assessing fetal response to maternal speech using a noninvasive functional brain imaging technique. Int J Dev Neurosci 30:159–161

    Article  PubMed  Google Scholar 

  48. Jardri R, Pins D, Houfflin-Debarge V, Chaffiotte C, Rocourt N, Pruvo JP, Steinling M, Delion P, Thomas P (2008) Fetal cortical activation to sound at 33 weeks of gestation: a functional MRI study. Neuroimage 42:10–18

    Article  PubMed  Google Scholar 

  49. Jiang S, Xue H, Counsell S, Anjari M, Allsop J, Rutherford M, Rueckert D, Hajnal JV (2009) Diffusion tensor imaging (DTI) of the brain in moving subjects: application to in-utero fetal and ex-utero studies. Magn Reson Med 62:645–655

    Article  PubMed  Google Scholar 

  50. Johnson IR, Stehling MK, Blamire AM, Coxon RJ, Howseman AM, Chapman B, Ordidge RJ, Mansfield P, Symonds EM, Worthington BS et al (1990) Study of internal structure of the human fetus in utero by echo-planar magnetic resonance imaging. Am J Obstet Gynecol 163:601–607

    Article  CAS  PubMed  Google Scholar 

  51. Kanal E, Shellock FG, Talagala L (1990) Safety considerations in MR imaging. Radiology 176:593–606

    Article  CAS  PubMed  Google Scholar 

  52. Kasprian G, Brugger PC, Weber M, Krssak M, Krampl E, Herold C, Prayer D (2008) In utero tractography of fetal white matter development. Neuroimage 43:213–224

    Article  PubMed  Google Scholar 

  53. Kim K, Habas PA, Rousseau F, Glenn OA, Barkovich AJ, Studholme C (2010) Intersection based motion correction of multislice MRI for 3-D in utero fetal brain image formation. IEEE Trans Med Imaging 29:146–158

    Article  PubMed Central  PubMed  Google Scholar 

  54. Kim K, Habas PA, Rousseau F, Glenn OA, Barkovich AJ, Studholme C (2010) Reconstruction of a geometrically correct diffusion tensor image of a moving human fetal brain. Proc Med Imag: Image Proc. 7623:I:1–I:9

    Google Scholar 

  55. Kok RD, Steegers-Theunissen RP, Eskes TK, Heerschap A, Van Den Berg PP (2003) Decreased relative brain tissue levels of inositol in fetal hydrocephalus. Am J Obstet Gynecol 188:978–980

    Article  CAS  PubMed  Google Scholar 

  56. Kok RD, Van Den Berg PP, Van Den Bergh AJ, Nijland R, Heerschap A (2002) Maturation of the human fetal brain as observed by 1H MR spectroscopy. Magn Reson Med 48:611–616

    Article  CAS  PubMed  Google Scholar 

  57. Kubik-Huch RA, Huisman TA, Wisser J, Gottstein-Aalame N, Debatin JF, Seifert B, Ladd ME, Stallmach T, Marincek B (2000) Ultrafast MR imaging of the fetus. AJR Am J Roentgenol 174:1599–1606

    Article  CAS  PubMed  Google Scholar 

  58. Lauterbur PC (1989) Image formation by induced local interactions. Examples employing nuclear magnetic resonance 1973. Clin Orthop Relat Res 244:3–6

    Google Scholar 

  59. Levine D, Zuo C, Faro CB, Chen Q (2001) Potential heating effect in the gravid uterus during MR HASTE imaging. J Magn Reson Imaging 13:856–861

    Article  CAS  PubMed  Google Scholar 

  60. Limperopoulos C, Tworetzky W, Mcelhinney DB, Newburger JW, Brown DW, Robertson RL Jr, Guizard N, Mcgrath E, Geva J, Annese D, Dunbar-Masterson C, Trainor B, Laussen PC, Du Plessis AJ (2010) Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation 121:26–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Liu J, Glenn OA, Xu D (2014) Fast, free-breathing, in vivo fetal imaging using time-resolved 3D MRI technique: preliminary results. Quant Imaging Med Surg 4:123–128

    PubMed Central  PubMed  Google Scholar 

  62. Magin RL, Lee JK, Klintsova A, Carnes KI, Dunn F (2000) Biological effects of long-duration, high-field (4 T) MRI on growth and development in the mouse. J Magn Reson Imaging 12:140–149

    Article  CAS  PubMed  Google Scholar 

  63. Malamateniou C, Malik SJ, Counsell SJ, Allsop JM, Mcguinness AK, Hayat T, Broadhouse K, Nunes RG, Ederies AM, Hajnal JV, Rutherford MA (2013) Motion-compensation techniques in neonatal and fetal MR imaging. AJNR Am J Neuroradiol 34:1124–1136

    Article  CAS  PubMed  Google Scholar 

  64. Manganaro L, Perrone A, Savelli S, Di Maurizio M, Maggi C, Ballesio L, Porfiri LM, De Felice C, Marinoni E, Marini M (2007) Evaluation of normal brain development by prenatal MR imaging. Radiol Med 112:444–455

    Article  CAS  PubMed  Google Scholar 

  65. Mansfield P, Maudsley AA (1977) Medical imaging by NMR. Br J Radiol 50:188–194

    Article  CAS  PubMed  Google Scholar 

  66. Mansfield P, Stehling MK, Ordidge RJ, Coxon R, Chapman B, Blamire A, Gibbs P, Johnson IR, Symonds EM, Worthington BS et al (1990) Echo planar imaging of the human fetus in utero at 0.5 T. Br J Radiol 63:833–841

    Article  CAS  PubMed  Google Scholar 

  67. Mccarthy SM, Filly RA, Stark DD, Hricak H, Brant-Zawadzki MN, Callen PW, Higgins CB (1985) Obstetrical magnetic resonance imaging: fetal anatomy. Radiology 154:427–432

    Article  CAS  PubMed  Google Scholar 

  68. Michel SC, Rake A, Keller TM, Huch R, Konig V, Seifert B, Marincek B, Kubik-Huch RA (2003) Original report. Fetal cardiographic monitoring during 1.5-T MR imaging. AJR Am J Roentgenol 180:1159–1164

    Article  PubMed  Google Scholar 

  69. Mitter C, Kasprian G, Brugger PC, Prayer D (2011) Three-dimensional visualization of fetal white-matter pathways in utero. Ultrasound Obstet Gynecol 37:252–253

    Article  CAS  PubMed  Google Scholar 

  70. Moore RJ, Vadeyar S, Fulford J, Tyler DJ, Gribben C, Baker PN, James D, Gowland PA (2001) Antenatal determination of fetal brain activity in response to an acoustic stimulus using functional magnetic resonance imaging. Hum Brain Mapp 12:94–99

    Article  CAS  PubMed  Google Scholar 

  71. Mukherjee P, Mckinstry RC (2006) Diffusion tensor imaging and tractography of human brain development. Neuroimaging Clin N Am 16:19–43, vii

    Article  PubMed  Google Scholar 

  72. Myers C, Duncan KR, Gowland PA, Johnson IR, Baker PN (1998) Failure to detect intrauterine growth restriction following in utero exposure to MRI. Br J Radiol 71:549–551

    Article  CAS  PubMed  Google Scholar 

  73. Nemec SF, Brugger PC, Nemec U, Bettelheim D, Kasprian G, Amann G, Rimoin DL, Graham JM Jr, Prayer D (2012) Situs anomalies on prenatal MRI. Eur J Radiol 81:e495–e501

    Article  PubMed  Google Scholar 

  74. Novak Z, Thurmond AS, Ross PL, Jones MK, Thornburg KL, Katzberg RW (1993) Gadolinium-DTPA transplacental transfer and distribution in fetal tissue in rabbits. Invest Radiol 28:828–830

    Article  CAS  PubMed  Google Scholar 

  75. Okazaki O, Murayama N, Masubuchi N, Nomura H, Hakusui H (1996) Placental transfer and milk secretion of gadodiamide injection in rats. Arzneimittelforschung 46:83–86

    CAS  PubMed  Google Scholar 

  76. Paley MN, Morris JE, Jarvis D, Griffiths PD (2013) Fetal electrocardiogram (fECG) gated MRI. Sensors (Basel) 13:11271–11279

    Article  Google Scholar 

  77. Pier DB, Levine D, Kataoka ML, Estroff JA, Werdich XQ, Ware J, Beeghly M, Poussaint TY, Duplessis A, Li Y, Feldman HA (2011) Magnetic resonance volumetric assessments of brains in fetuses with ventriculomegaly correlated to outcomes. J Ultrasound Med 30:595–603

    PubMed Central  PubMed  Google Scholar 

  78. Poutamo J, Partanen K, Vanninen R, Vainio P, Kirkinen P (1998) MRI does not change fetal cardiotocographic parameters. Prenat Diagn 18:1149–1154

    Article  CAS  PubMed  Google Scholar 

  79. Prayer D, Barkovich AJ, Kirschner DA, Prayer LM, Roberts TP, Kucharczyk J, Moseley ME (2001) Visualization of nonstructural changes in early white matter development on diffusion-weighted MR images: evidence supporting premyelination anisotropy. AJNR Am J Neuroradiol 22:1572–1576

    CAS  PubMed  Google Scholar 

  80. Prayer D, Brugger PC, Prayer L (2004) Fetal MRI: techniques and protocols. Pediatr Radiol 34:685–693

    Article  PubMed  Google Scholar 

  81. Rajagopalan V, Scott J, Habas PA, Kim K, Rousseau F, Glenn OA, Barkovich AJ, Studholme C (2010) Measures for characterizing directionality specific volume changes in TBM of brain growth. Med Image Comput Comput Assist Interv 13:339–346

    PubMed Central  PubMed  Google Scholar 

  82. Rajagopalan V, Scott J, Habas PA, Kim K, Rousseau F, Glenn OA, Barkovich AJ, Studholme C (2012) Mapping directionality specific volume changes using tensor based morphometry: an application to the study of gyrogenesis and lateralization of the human fetal brain. Neuroimage 63:947–958

    Article  PubMed Central  PubMed  Google Scholar 

  83. Righini A, Bianchini E, Parazzini C, Gementi P, Ramenghi L, Baldoli C, Nicolini U, Mosca F, Triulzi F (2003) Apparent diffusion coefficient determination in normal fetal brain: a prenatal MR imaging study. AJNR Am J Neuroradiol 24:799–804

    PubMed  Google Scholar 

  84. Roelants-Van Rijn AM, Groenendaal F, Stoutenbeek P, Van Der Grond J (2004) Lactate in the foetal brain: detection and implications. Acta Paediatr 93:937–940

    Article  PubMed  Google Scholar 

  85. Rofsky NM, Pizzarello DJ, Weinreb JC, Ambrosino MM, Rosenberg C (1994) Effect on fetal mouse development of exposure to MR imaging and gadopentetate dimeglumine. J Magn Reson Imaging 4:805–807

    Article  CAS  PubMed  Google Scholar 

  86. Rothenberger A, Roessner V (2006) Diffusion tensor imaging (DTI) of the corpus callosum may further elucidate development of brain lateralization. Fortschr Neurol Psychiatr 74:133–135

    Article  CAS  PubMed  Google Scholar 

  87. Rousseau F, Glenn OA, Iordanova B, Rodriguez-Carranza C, Vigneron DB, Barkovich JA, Studholme C (2006) Registration-based approach for reconstruction of high-resolution in utero fetal MR brain images. Acad Radiol 13:1072–1081

    Article  PubMed  Google Scholar 

  88. Schneider JF, Confort-Gouny S, Le Fur Y, Viout P, Bennathan M, Chapon F, Fogliarini C, Cozzone P, Girard N (2007) Diffusion-weighted imaging in normal fetal brain maturation. Eur Radiol 17:2422–2429

    Article  CAS  PubMed  Google Scholar 

  89. Schopf V, Kasprian G, Brugger PC, Prayer D (2012) Watching the fetal brain at ‘rest’. Int J Dev Neurosci 30:11–17

    Article  CAS  PubMed  Google Scholar 

  90. Scott JA, Habas PA, Kim K, Rajagopalan V, Hamzelou KS, Corbett-Detig JM, Barkovich AJ, Glenn OA, Studholme C (2011) Growth trajectories of the human fetal brain tissues estimated from 3D reconstructed in utero MRI. Int J Dev Neurosci 29:529–536

    Article  PubMed Central  PubMed  Google Scholar 

  91. Scott JA, Habas PA, Rajagopalan V, Kim K, Barkovich AJ, Glenn OA, Studholme C (2013) Volumetric and surface-based 3D MRI analyses of fetal isolated mild ventriculomegaly: brain morphometry in ventriculomegaly. Brain Struct Funct 218:645–655

    Article  PubMed  Google Scholar 

  92. Shellock FG, Kanal E (1991) Policies, guidelines, and recommendations for MR imaging safety and patient management. SMRI Safety Committee. J Magn Reson Imaging 1:97–101

    Article  CAS  PubMed  Google Scholar 

  93. Shellock FG, Kanal E (1996) Bioeffects and safety of MR procedures. In: Hasselink JR, Zlatkin MB, Edelman RR (eds) Clinical magnetic resonance imaging. Saunders, Philadelphia, p 426

    Google Scholar 

  94. Smith FW, Adam AH, Phillips WD (1983) NMR imaging in pregnancy. Lancet 1:61–62

    Article  CAS  PubMed  Google Scholar 

  95. Sorensen A, Peters D, Simonsen C, Pedersen M, Stausbol-Gron B, Christiansen OB, Lingman G, Uldbjerg N (2013) Changes in human fetal oxygenation during maternal hyperoxia as estimated by BOLD MRI. Prenat Diagn 33:141–145

    Article  CAS  PubMed  Google Scholar 

  96. Sørensen A, Peters D, Fründ E, Lingman G, Christiansen O, Uldbjerg N (2013) Changes in human placental oxygenation during maternal hyperoxia estimated by blood oxygen level-dependent magnetic resonance imaging (BOLD MRI). Ultrasound Obstet Gynecol 42:310–314

    Article  PubMed  Google Scholar 

  97. Stegemann T, Heimann M, Dusterhus P, Schulte-Markwort M (2006) Diffusion tensor imaging (DTI) and its importance for exploration of normal or pathological brain development. Fortschr Neurol Psychiatr 74:136–148

    Article  CAS  PubMed  Google Scholar 

  98. Stern MD, Kopylov U, Ben-Horin S, Apter S, Amitai MM (2014) Magnetic resonance enterography in pregnant women with Crohn’s disease: case series and literature review. BMC Gastroenterol 14:146

    Article  PubMed Central  PubMed  Google Scholar 

  99. Story L, Damodaram MS, Allsop JM, Mcguinness A, Wylezinska M, Kumar S, Rutherford MA (2011) Proton magnetic resonance spectroscopy in the fetus. Eur J Obstet Gynecol Reprod Biol 158:3–8

    Article  PubMed  Google Scholar 

  100. Studholme C (2011) Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping. Annu Rev Biomed Eng 13:345–368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Sundgren PC, Leander P (2011) Is administration of gadolinium-based contrast media to pregnant women and small children justified? J Magn Reson Imaging 34:750–757

    Article  PubMed  Google Scholar 

  102. Thickman D, Mintz M, Mennuti M, Kressel HY (1984) MR imaging of cerebral abnormalities in utero. J Comput Assist Tomogr 8:1058–1061

    Article  CAS  PubMed  Google Scholar 

  103. Thomason ME, Dassanayake MT, Shen S, Katkuri Y, Alexis M, Anderson AL, Yeo L, Mody S, Hernandez-Andrade E, Hassan SS, Studholme C, Jeong JW, Romero R (2013) Cross-hemispheric functional connectivity in the human fetal brain. Sci Transl Med 5:173ra24

    Article  PubMed Central  PubMed  Google Scholar 

  104. Thomason ME, Thompson PM (2011) Diffusion imaging, white matter, and psychopathology. Annu Rev Clin Psychol 7:63–85

    Article  PubMed  Google Scholar 

  105. Triulzi F, Manganaro L, Volpe P (2011) Fetal magnetic resonance imaging: indications, study protocols and safety. Radiol Med 116:337–350

    Article  CAS  PubMed  Google Scholar 

  106. Wack C, Steger-Hartmann T, Mylecraine L, Hofmeister R (2012) Toxicological safety evaluation of gadobutrol. Invest Radiol 47:611–623

    Article  CAS  PubMed  Google Scholar 

  107. Williamson RA, Weiner CP, Yuh WT, Abu-Yousef MM (1989) Magnetic resonance imaging of anomalous fetuses. Obstet Gynecol 73:952–956

    CAS  PubMed  Google Scholar 

  108. Yaniv G, Hoffmann C, Weisz B, Lipitz S, Katorza E, Kidron D, Bergman D, Biegon A (2014) Region selective reductions in brain apparent diffusion coefficient in CMV-infected fetuses. Ultrasound Obstet Gynecol. doi: 10.1002/uog.14737. [Epub ahead of print]

    Google Scholar 

  109. Yip YP, Capriotti C, Talagala SL, Yip JW (1994) Effects of MR exposure at 1.5 T on early embryonic development of the chick. J Magn Reson Imaging 4:742–748

    Article  CAS  PubMed  Google Scholar 

  110. Zizka J, Elias P, Hodik K, Tintera J, Juttnerova V, Belobradek Z, Klzo L (2006) Liver, meconium, haemorrhage: the value of T1-weighted images in fetal MRI. Pediatr Radiol 36:792–801

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anat Biegon PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Biegon, A., Hoffmann, C., Amitai, M.M., Yaniv, G. (2016). Current Techniques and Future Directions for Fetal MRI. In: Masselli, G. (eds) MRI of Fetal and Maternal Diseases in Pregnancy. Springer, Cham. https://doi.org/10.1007/978-3-319-21428-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21428-3_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21427-6

  • Online ISBN: 978-3-319-21428-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics