Skip to main content

Technical Aspects of Dual Energy CT with Dual Source CT Systems

  • Chapter
Dual-Energy CT in Cardiovascular Imaging

Abstract

This article describes technical principles and clinical applications of dual energy (DE) scanning with dual source CT (DSCT) systems, with a focus on vascular and cardiac applications. DSCT systems acquire DE data by simultaneously operating both x-ray tubes at different x-ray tube voltages (different kV). The quality of dual energy images relies on the effective separation of the energy spectra. In DSCT, the energy separation can be significantly improved by tin pre-filtration of the high-energy spectrum. This is a pre-requisite for DE acquisitions at similar radiation dose compared with single-energy CT exams. DSCT systems provide dedicated algorithms to restore the temporal resolution of a quarter of the rotation time (66–83 ms, depending on the scanner generation) in DE CT angiographic examinations of the heart. In addition, iterative beamhardening correction is available to significantly reduce iodine-related beamhardening artifacts, e.g. in the myocardium, which could otherwise degrade the quality of DE material decomposition. DSCT systems have to cope with certain challenges, such as cross-scattered radiation, which requires model-based or measurement-based correction, or a limited scan field of view (SFOV) of the second detector (35.5 cm with third generation DSCT). Pertinent vascular and cardiac applications are the computation of pseudo mono-energetic images to increase the iodine contrast-to-noise ratio (CNR) at low energies (keV) or to reduce metal artifacts and Ca-blooming at high keV, automated subtraction of bone and calcifications from CT angiographic scans, or the computation of iodine maps and virtual non-enhanced CT images. DE iodine maps of the myocardium acquired at rest and during stress have been used to evaluate the myocardial blood supply and to identify hemodynamically relevant stenosis. DE scanning of the heart is therefore a promising step toward comprehensive evaluation of coronary artery disease with a single modality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flohr TG, McCollough CH, Bruder H, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol. 2006;16(2):256–68.

    Article  PubMed  Google Scholar 

  2. Flohr TG, Stierstorfer K, Ulzheimer S, Bruder H, Primak AN, McCollough CH. Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot. Med Phys. 2005;32(8):2536–47.

    Article  CAS  PubMed  Google Scholar 

  3. Matt D, Scheffel H, Leschka S, et al. Dual-source CT coronary angiography: image quality, mean heart rate, and heart rate variability. AJR Am J Roentgenol. 2007;189(3):567–73.

    Article  PubMed  Google Scholar 

  4. Leber AW, Johnson T, Becker A, et al. Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur Heart J. 2007;28(19):2354–60.

    Article  PubMed  Google Scholar 

  5. Ropers U, Ropers D, Pflederer T, et al. Influence of heart rate on the diagnostic accuracy of dual-source computed tomography coronary angiography. J Am Coll Cardiol. 2007;50(25):2393–8.

    Article  PubMed  Google Scholar 

  6. Primak AN, Giraldo JC, Eusemann CD, et al. Dual-source dual-energy CT with additional tin filtration: dose and image quality evaluation in phantoms and in vivo. AJR Am J Roentgenol. 2010;195(5):1164–74.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Graser A, Becker CR, Staehler M, et al. Single-phase dual-energy CT allows for characterization of renal masses as benign or malignant. Invest Radiol. 2010;45(7):399–405.

    PubMed  Google Scholar 

  8. Thieme SF, Johnson TRC, Lee C, et al. Dual-energy CT for the assessment of contrast material distribution in the pulmonary parenchyma. AJR. 2009;193:144–9.

    Article  PubMed  Google Scholar 

  9. Ruzsics B, Lee H, Powers ER, Flohr TG, Costello P, Schoepf UJ. Myocardial ischemia diagnosed by dual-energy computed tomography: correlation with single-photon emission computed tomography. Circulation. 2008;117:1244–5.

    Article  PubMed  Google Scholar 

  10. Schenzle JC, Sommer WH, Neumaier K, et al. Dual energy CT of the chest: how about the dose? Invest Radiol. 2010;45:347–53.

    PubMed  Google Scholar 

  11. Bauer RW, Kramer S, Renker M, et al. Dose and image quality at CT pulmonary angiography: comparison of first and second generation dual energy CT and 64-slice CT. Eur Radiol. 2011;21:2139–47.

    Article  PubMed  Google Scholar 

  12. Henzler T, Fink C, Schoenberg SO, Schoepf UJ. Dual energy CT: radiation dose aspects. AJR. 2012;199:S16.

    Article  PubMed  Google Scholar 

  13. Petersilka M, Stierstorfer K, Bruder H, Flohr T. Strategies for scatter correction in dual source CT. Med Phys. 2010;37(11):5971–92.

    Article  CAS  PubMed  Google Scholar 

  14. Nance JW, Bastarrika G, Kang DK, et al. High temporal resolution dual-energy computed tomography of the heart using a novel hybrid image reconstruction algorithm: initial experience. J Comput Assist Tomogr. 2011;35:119–25.

    Article  PubMed  Google Scholar 

  15. Yu L, Leng S, McCollough C, et al. Dual-energy CT-based monochromatic imaging. Am J Roentgenol. 2012;199(5 Suppl):S9–15.

    Article  Google Scholar 

  16. Schneider D, Apfaltrer P, Sudarski S, et al. Optimization of kiloelectron volt settings in cerebral and cervical dual-energy CT angiography determined with virtual monoenergetic imaging. Acad Radiol. 2014;21:431–6.

    Article  PubMed  Google Scholar 

  17. Apfaltrer P, Sudarski S, Schneider D, et al. Value of monoenergetic low-kV dual energy CT datasets for improved image quality of CT pulmonary angiography. Eur J Radiol. 2014;83:322–8.

    Article  PubMed  Google Scholar 

  18. Sudarski S, Apfaltrer P, Nance JW, et al. Optimization of keV-settings in abdominal and lower extremity dual-source dual-energy CT angiography determined with virtual monoenergetic imaging. Eur J Radiol. 2013;82:e574–81.

    Article  PubMed  Google Scholar 

  19. Grant KL, Flohr TG, Krauss B, et al. Assessment of an advanced image-based technique to calculate virtual monoenergetic CT images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media. Invest Radiol. 2014;49(9):586–92.

    Article  PubMed  Google Scholar 

  20. Lewis M, Reid K, Toms AP. Reducing the effects of metal artefact using high keVmonoenergetic reconstruction of dual energy CT (DECT) in hip replacements. Skeletal Radiol. 2013;42(2):275–82.

    Article  PubMed  Google Scholar 

  21. Guggenhofer R, Winklhofer S, Osterhoff G, et al. Metallic artefact reduction with monoenergetic dual-energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels. Eur Radiol. 2012;22(11):2357–64.

    Article  Google Scholar 

  22. Secchi F, De Cecco CN, Spearman JV, et al. Monoenergetic extrapolation of cardiac dual energy CT for artifact reduction. Acta Radiol. 2015;56(4):413–8.

    Article  PubMed  Google Scholar 

  23. Vlahos J, Chung R, Nair A, Morgan R. Dual energy CT: vascular applications. AJR. 2012;199:S87–97.

    Article  PubMed  Google Scholar 

  24. Stolzmann P, Frauenfelder T, Pfammatter T, et al. Endoleaks after endovascular abdominal aortic aneurysm repair: detection with dual-energy dual-source CT. Radiology. 2008;249(2):682–91.

    Article  PubMed  Google Scholar 

  25. Ascenti G, Mazziotti S, Lamberto S, et al. Dual-energy CT for detection of endoleaks after endovascular abdominal aneurysm repair: usefulness of colored iodine overlay. AJR Am J Roentgenol. 2011;196(6):1408–14.

    Article  PubMed  Google Scholar 

  26. Flors L, Leiva-Salinas C, Norton PT, Patrie JT, Hagspiel KD. Endoleak detection after endovascular repair of thoracic aortic aneurysm using dual-source dual-energy CT: suitable scanning protocols and potential radiation dose reduction. AJR Am J Roentgenol. 2013;200(2):451–60.

    Article  PubMed  Google Scholar 

  27. Pontana F, Faivre JB, Remy-Jardin M, et al. Lung perfusion with dual-energy multidetector-row CT (MDCT): feasibility for the evaluation of acute pulmonary embolism in 117 consecutive patients. Acad Radiol. 2008;15(12):1494–504.

    Article  PubMed  Google Scholar 

  28. Thieme SF, Becker CR, Hacker M, Nikolaou K, Reiser MF, Johnson TR. Dual energy CT for the assessment of lung perfusion – correlation to scintigraphy. Eur J Radiol. 2008;68(3):369–74.

    Article  PubMed  Google Scholar 

  29. Pansini V, Remy-Jardin M, Faivre JB, et al. Assessment of lobar perfusion in smokers according to the presence and severity of emphysema: preliminary experience with dual-energy CT angiography. Eur Radiol. 2009;19(12):2834–43.

    Article  PubMed  Google Scholar 

  30. Lu GM, Zhao Y, Zhang LJ, Schoepf UJ. Dual-energy CT of the lung. AJR Am J Roentgenol. 2012;199(5 Suppl):S40–53.

    Article  PubMed  Google Scholar 

  31. George RT, Silva C, Cordeiro MA, et al. Multidetector computed tomography myocardial perfusion imaging during adenosine stress. J Am Coll Cardiol. 2006;48:153–60.

    Article  PubMed  Google Scholar 

  32. Bezerra HG, Loureiro R, Irlbeck T, et al. Incremental value of myocardial perfusion over regional left ventricular function and coronary stenosis by cardiac CT for the detection of acute coronary syndromes in high-risk patients: a subgroup analysis of the ROMICAT trial. J Cardiovasc Comput Tomogr. 2011;5(6):382–91.

    Article  PubMed  Google Scholar 

  33. Rocha-Filho JA, Blankstein R, Shturman LD, et al. Incremental value of adenosine-induced stress myocardial perfusion imaging with dual-source CT at cardiac CT angiography. Radiology. 2010;254(2):410–9.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Ruzsics B, Schwarz F, Schoepf UJ, et al. Comparison of dual-energy computed tomography of the heart with single photon emission computed tomography for assessment of coronary artery stenosis and of the myocardial blood supply. Am J Cardiol. 2009;104(3):318–26.

    Article  PubMed  Google Scholar 

  35. Wang R, Yu W, Wang Y, et al. Incremental value of dual-energy CT to coronary CT angiography for the detection of significant coronary stenosis: comparison with quantitative coronary angiography and single photon emission computed tomography. Int J Cardiovasc Imaging. 2011;27:647–56.

    Article  CAS  PubMed  Google Scholar 

  36. Ko SM, Choi JW, Song MG, et al. Myocardial perfusion imaging using adenosine-induced stress dual-energy computed tomography of the heart: comparison with cardiac magnetic resonance imaging and conventional coronary angiography. Eur Radiol. 2011;21:26–35.

    Article  PubMed  Google Scholar 

  37. Weininger M, Schoepf UJ, Ramachandra A, et al. Adenosine-stress dynamic real-time myocardial perfusion and adenosine-stress first-pass dual-energy myocardial perfusion CT for the assessment of acute chest pain: initial results. Eur J Radiol. 2012;81(12):3703–10.

    Article  PubMed  Google Scholar 

  38. Ko SM, Choi JW, Hwang HK, Song MG, Shin JK, Chee HK. Diagnostic performance of combined noninvasive anatomic and functional assessment with dual-source CT and adenosine-induced stress dual-energy CT for detection of significant coronary stenosis. AJR. 2012;198:512–20.

    Article  PubMed  Google Scholar 

  39. Vliegenthart R, Pilgrim GJ, Ebersberger U, Rowe GW, Oudkerk M, Schoepf UJ. Dual-energy CT of the heart. AJR. 2012;199:S54–63.

    Article  PubMed  Google Scholar 

  40. Ko SM, Park JH, Hwang HK, Song MG. Direct comparison of stress- and rest-dual-energy computed tomography for detection of myocardial perfusion defect. Int J Cardiovasc Imaging. 2014;30 Suppl 1:41–53.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Flohr PhD or Bernhard Schmidt PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Flohr, T., Schmidt, B. (2015). Technical Aspects of Dual Energy CT with Dual Source CT Systems. In: Carrascosa, P., Cury, R., García, M., Leipsic, J. (eds) Dual-Energy CT in Cardiovascular Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-21227-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21227-2_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21226-5

  • Online ISBN: 978-3-319-21227-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics