Skip to main content

Abstract

Myocardial viability assessment can be a key factor in determining the direction of care in a patient with coronary artery disease. Many imaging modalities can be utilized for this purpose, including echocardiography, nuclear medicine perfusion scans, and cardiac magnetic resonance imaging. Cardiac computed tomography (CCTA) provides an alluring options given this modality possesses the ability to evaluate both the coronary anatomy as well as myocardial perfusion and scar burden. While CCTA is well accepted as a method to evaluate the coronary arteries for atherosclerosis, the role of this modality when it comes to viability assessment is less clear. Some of this uncertainty may be derived from the contrast limitations that standard CCTA faces when attempting to evaluate the myocardium. The addition of dual energy imaging to CCTA allows a number of avenues to improve contrast resolution and reduce artifact, including material decomposition images (iodine maps) and virtual monochromatic energy image creation. It is possible that dual energy CCTA will afford the ability to confirm not only whether or not a patient has coronary disease, but also if they may benefit from revascularization in a single 20 min exam.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, Erglis A, Lin FY, Dunning AM, Apruzzese P, Budoff MJ, Cole JH, Jaffer FA, Leon MB, Malpeso J, Mancini GBJ, Park SJ, Schwartz RS, Shaw LJ, Mauri L. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA. 2012;308(12):1237–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Nakazato R, Park HB, Berman DS, Gransar H, Koo BK, Erglis A, Lin FY, Dunning AM, Budoff MJ, Malpeso J, Leipsic J, Min JK. Noninvasive fractional flow reserve derived from computed tomography angiography for coronary lesions of intermediate stenosis severity: results from the DeFACTO study. Circ Cardiovasc Imaging. 2013;6(6):881–9.

    Article  PubMed  Google Scholar 

  3. Mc Ardle BA, Beanlands RSB. Myocardial viability: whom, what, why, which, and how? Can J Cardiol. 2013;29(3):399–402.

    Article  PubMed  Google Scholar 

  4. Vliegenthart R, Pelgrim GJ, Ebersberger U, Rowe GW, Oudkerk M, Schoepf UJ. Dual-energy CT of the heart. AJR. 2012;199(5):S54–63.

    Article  PubMed  Google Scholar 

  5. Nesto RW, Kowalchuck GJ. The ischemic cascade. temporal sequence of hemodynamic, electrocardiographic and symptomatic expressions of ischemia. Am J Cardiol. 1987;57:23C–7.

    Article  Google Scholar 

  6. Baggish AL, Boucher CA. Contempoary reviews in cardiovascular medicine. Radiopharmaceutical agents for myocardial perfusion imaging. Circulation. 2008;118:1668–74.

    Article  PubMed  Google Scholar 

  7. Sicari R, Nihoyannopoulos P, Evangelista A, Kasprzak J, Lancellotti P, Poldermans D, Voigt J-U, Zamorano JL. Stress echocardiography expert consensus statement: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur J Echocardiogr. 2008;9(4):415–37.

    Article  PubMed  Google Scholar 

  8. Wu HD, Kwong RY. Cardiac magnetic resonance imaging in patients with coronary disease. Curr Treat Options Cardiovasc Med. 2008;10(1):83–92.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Kim RJ, Wu E, Rafael A, Chen E-L, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343:1445–53.

    Article  CAS  PubMed  Google Scholar 

  10. Velazquez EJ, Lee KL, Deja MA, Jain A, Sopko G, Marchenko A, Ali IS, Pohost G, Gradinac S, Abraham WT, Yii M, Prabhakaran D, Szwed H, Ferrazzi P, Petrie MC, O’Connor CM, Panchavinnin P, She L, Bonow RO, Rankin GR, Jones RH, Rouleau J-L M.D., STICH Investigators. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N Engl J Med. 2011;364:1607–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Bonow RO, Maurer G, Lee KL, Holly TA, Binkley PF, Desvigne-Nickens P, Drozdz J, Farsky PS, Feldman AM, Doenst T, Michler RE, Berman DS, Nicolau JC, Pellikka PA, Wrobel K, Alotti N, Asch FM, Favaloro LE, She L, Velazquez EJ, Jones RH, Panza JA, STICH Trial Investigators. Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med. 2011;364(17):1617–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Lardo AC, Cordeiro MAS, Silva C, Amado LC, George RT, Saliaris AP, Schuleri KH, Fernandes VR, Zviman M, Nazarian S, Halperin HR, Wu KC, Hare JM, Lima JAC. Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation. 2006;113:394–404.

    Article  PubMed Central  PubMed  Google Scholar 

  13. So A, Lee TY, Imai Y, Narayanan S, Hsieh J, Kramer J, Procknow K, Leipsic J, Labounty T, Min J. Quantitative myocardial perfusion imaging using rapid kVp switch dual-energy CT: preliminary experience. J Cardiovasc Comput Tomogr. 2011;5(6):430–42.

    Article  PubMed  Google Scholar 

  14. Scheske JA, O’Brien JM, Earls JP, Min JK, LaBounty TM, Cury RC, Lee TY, So A, Hague CJ, Al-Hassan D, Kuriyabashi S, Dowe DA, Leipsic JA. Coronary artery imaging with single-source rapid kilovolt peak-switching dual-energy CT. Radiology. 2013;268(3):702–9.

    Article  PubMed  Google Scholar 

  15. Yuan R, Shuman WP, Earls JP, Hague CJ, Mumtaz HA, Scott-Moncrieff A, Ellis JD, Mayo JR, Leipsic JA. Reduced iodine load at CT pulmonary angiography with dual-energy monochromatic imaging: comparison with standard CT pulmonary angiography—a prospective randomized trial. Radiology. 2012;262(1):290–7.

    Article  PubMed  Google Scholar 

  16. So A, Hsieh J, Narayanan S, Thibault J-B, Imai Y, Dutta S. Dual-energy CT and its potential use for quantitative myocardial CT perfusion. J Cardiovasc Comput Tomogr. 2012;6:308–17.

    Article  PubMed  Google Scholar 

  17. Kalva SP, Sahani DV, Hahn PF, Saini S. Using the K-edge to improve contrast conspicuity and to lower radiation dose with a 16-MDCT: a phantom and human study. J Comput Assist Tomogr. 2006;30(3):391–7.

    Article  PubMed  Google Scholar 

  18. Wichmann JL, Bauer RW, Doss M, Stock W, Thomas Lehnert T, Bodelle B, Frellesen C, Vogl TJ, Kerl JM. Diagnostic accuracy of late iodine-enhancement dual-energy computed tomography for the detection of chronic myocardial infarction compared with late gadolinium-enhancement 3-T magnetic resonance imaging. Invest Radiol. 2013;48:851–6.

    Article  PubMed  Google Scholar 

  19. Kartje JK, Schmidt B, Bruners P, Mahnken AH. Dual energy CT with nonlinear image blending improves visualization of delayed myocardial contrast enhancement in acute myocardial infarction. Invest Radiol. 2013;48:41–5.

    Article  PubMed  Google Scholar 

  20. Ruzsics B, Lee H, Powers ER, Flohr TG, Costello P, Schoepf UJ. Myocardial ischemia diagnosed by dual-energy computed tomography: correlation with single-photon emission computed tomography. Circulation. 2008;117:1244–5.

    Article  PubMed  Google Scholar 

  21. Hamirani YS, Kramer CM. Advances in stress cardiac MRI and computed tomography. Future Cardiol. 2013;9(5):681–95.

    Article  CAS  PubMed  Google Scholar 

  22. Meinel FG, De Cecco CN, Schoepf UJ, Nance JW, Silverman JR, Flowers BA, Henzler T. First–arterial-pass dual-energy CT for assessment of myocardial blood supply: do we need rest, stress, and delayed acquisition? Comparison with SPECT. Radiology. 2014;270:708–16.

    Article  PubMed  Google Scholar 

  23. Kurobe Y, Kitagawa K, Ito T, Kurita Y, Shiraishi Y, Nakamori S, Nakajima H, Nagata M, Ishida M, Dohi K, Ito M, Sakuma H. Myocardial delayed enhancement with dual-source CT: advantages of targeted spatial frequency filtration and image averaging over half-scan reconstruction. JCCT. 2014;8(4):289–98.

    Google Scholar 

  24. Carrascosa P, Deviggiano A, Capuñay C, et al. Incremental value of myocardial perfusion over coronary angiography by spectral computed tomography in patients with intermediate to high likelihood of coronary artery disease. Eur J Radiol. 2015. doi:10.1016/j. pii: S0720-048X(15)00002-9.

    Google Scholar 

  25. De Cecco C, Harris B, Schoepf U, et al. Incremental value of pharmacological stress cardiac dual-energy CT over coronary CT angiography alone for the assessment of coronary artery disease in a high-risk population. AJR. 2014;203:70–7.

    Article  Google Scholar 

  26. Hausleiter J, Bischoff B, Hein F, Meyer T, Hadamitzky M, Thierfelder C, Allmendinger T, Flohr TG, Schömig A, Martinoff S. Feasibility of dual-source cardiac CT angiography with high-pitch scan protocols. J Cardiovasc Comput Tomogr. 2009;3:236–42.

    Article  PubMed  Google Scholar 

  27. Schwarz F, Ruzsics B, Schoepf UJ, Bastarrika G, Chiaramida SA, Abro JA, Brothers RL, Vogt S, Schmidt B, Costello P, Zwerner PL. Dual-energy CT of the heart—principles and protocols. Eur J Radiol. 2008;68:423–33.

    Article  PubMed  Google Scholar 

  28. George RT, Arbab-Zadeh A, Miller JM, Vavere AL, Bengel FM, Lardo AC, Lima JAC. Computed tomography myocardial perfusion imaging with 320-row detector computed tomography accurately detects myocardial ischemia in patients with obstructive coronary artery disease. Circ Cardiovasc Imaging. 2012;5:333–40.

    Article  PubMed  Google Scholar 

  29. Gerber BL, Belge B, Legros GJ, Lim P, Poncelet A, Pasquet A, Gisellu G, Coche E, Vanoverschelde JL. Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation. 2006;113:823–33.

    Article  PubMed  Google Scholar 

  30. Kerl JM, Deseive S, Tandi C, Kaiser C, Kettner M, Korkusuz H, Lehmann R, Herzog C, Schoepf UJ, Vogl TJ, Bauer RW. Dual energy CT for the assessment of reperfused chronic infarction – a feasibility study in a porcine model. Acta Radiol. 2011;52:834–9. Hamilton-Craig C, Seltmann M, Ropers D, Achenbach S Letter to the Editor: Myocardial Viability by Dual-energy Delayed Enhancement Computed tomography. JACC Cardiovascular Imaging. 2011;4(2):207–208.

    Article  PubMed  Google Scholar 

  31. Deseive S, Bauer RW, Lehmann R, Kettner M, Kaiser C, Korkusuz H, Tandi C, Theisen A, Schächinger V, Schoepf UJ, Vogl TJ, Kerl JM. Dual-energy computed tomography for the detection of late enhancement in reperfused chronic infarction: a comparison to magnetic resonance imaging and histopathology in a porcine model. Invest Radiol. 2011;46:450–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cameron Hague MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hague, C., Raju, R., Winchman, J. (2015). Myocardial CT Viability. In: Carrascosa, P., Cury, R., García, M., Leipsic, J. (eds) Dual-Energy CT in Cardiovascular Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-21227-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21227-2_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21226-5

  • Online ISBN: 978-3-319-21227-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics