Skip to main content

Myocardial Perfusion by Dual Energy CT

  • Chapter
Dual-Energy CT in Cardiovascular Imaging

Abstract

Coronary CT angiography (CCTA) in a reliable non-invasive tool for the assessment of coronary artery disease (CAD) in patients with low to intermediate risk of CAD, with a high diagnostic accuracy and an excellent negative predictive value. When a coronary stenosis is present, it’s hemodynamical relevance needs to be determined in order to facilitate the appropriate therapeutic decision. CCTA per se is a poor predictor of the physiologic relevance of a given stenotic lesion

For that reason, both anatomic and functional testing is usually required to correctly identify patients who will benefit from coronary intervention. The evaluation of functional imaging has been done with modalities such as single photon emission computed tomography, Magnetic Resonance Imaging, stress echocardiography, and Positron Emission Tomography.

In recent years multidetector computed tomography (MDCT) started to perform a comprehensive evaluation (anatomical and functional) in a single study, offering a complete evaluation of patient’s ischemic heart disease. To date, there have been several single-center studies showing good results. Recently, two multicenter trials have confirmed earlier findings in a larger scale. However challenges of myocardial CT Perfusion is beam hardening artifacts that produce non-uniform changes in CT densitometry generating inadequate assessment of myocardial perfusion. With the recent developments of dual-energy CT (DECT), the beam hardening effect on myocardial perfusion measurement could be reduced by the generation of monochromatic images and material decomposition ones.

The chapter will focus on the utility of DECT in myocardial perfusion and will explain:

  • Platforms for Dual-energy CTP, Scanning techniques, Types of analysis and postprocessing

  • Scientific Evidence, Cases and Radiation dose

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Klepzig H. Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur Heart J. 2008;29(5):680.

    Article  PubMed  Google Scholar 

  2. Leber AW, Johnson T, Becker A, et al. Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur Heart J. 2007;28(19):2354–60.

    Article  PubMed  Google Scholar 

  3. Miller JM, Rochitte CE, Dewey M, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359:2324–36.

    Article  CAS  PubMed  Google Scholar 

  4. Budoff MJ, Dowe D, Jollis JG, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52:1724–32.

    Article  PubMed  Google Scholar 

  5. Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R, et al. Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology. 2007;244:419–28.

    Article  PubMed  Google Scholar 

  6. Carrascosa P, Capunay C, Deviggiano A, et al. Accuracy of low-dose prospectively gated axial coronary CT angiography for the assessment of coronary artery stenosis in patients with stable heart rate. J Cardiovasc Comput Tomogr. 2010;4(3):197–205.

    Article  PubMed  Google Scholar 

  7. Meijboom WB, Meijs MF, Schuijf JD, et al. Diagnostic accuracy of 64- slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008;52:2135–44.

    Article  PubMed  Google Scholar 

  8. Lloyd-Jones D, Adams R, Carnethon M, et al. Heart disease and stroke statistics: 2009 update—a report from the American Heart Association Statistics Committee and Stroke Statistics subcommittee. Circulation. 2009;119:480–6.

    Article  PubMed  Google Scholar 

  9. Stolzmann P, Donati OF, Scheffel H. Low-dose CT coronary angiography for the prediction of myocardial ischaemia. Eur Radiol. 2010;20:56–64.

    Article  PubMed  Google Scholar 

  10. Gaemperli O, Schepis T, Valenta I, et al. Functionally relevant coronary artery disease: comparison of 64-section CT angiography with myocardial perfusion SPECT. Radiology. 2008;248:414–23.

    Article  PubMed  Google Scholar 

  11. Hachamovitch R, Berman DS, Kiat H, et al. Exermental prognostic value and use in risk stratification. Circulation. 1996;93:905–14.

    Article  CAS  PubMed  Google Scholar 

  12. Schwitter J, Nanz D, Kneifel S, et al. Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation. 2001;103:2230–5.

    Article  CAS  PubMed  Google Scholar 

  13. Santana CA, Garcia EV, Faber TL, et al. Diagnostic performance of fusion of myocardial perfusion imaging (MPI) and computed tomography coronary angiography. J Nucl Cardiol. 2009;16:201–11.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Gaemperli O, Schepis T, Valenta I, et al. Cardiac image fusion from stand-alone SPECT and CT: clinical experience. J Nucl Med. 2007;48:696–703.

    Article  PubMed  Google Scholar 

  15. Strauss HW, Harrison K, Langan JK, Lebowitz E, Pitt B. Thallium-201 for myocardial imaging. Relation of thallium-201 to regional myocardial perfusion. Circulation. 1975;51(4):641–5.

    Article  CAS  PubMed  Google Scholar 

  16. Berman DS, Kiat HS, Van Train KF, Germano G, Maddahi J, Friedman JD. Myocardial perfusion imaging with technetium-99m-sestamibi: comparative analysis fOR available imaging protocols. J Nucl Med. 1994;35(4):681–8.

    CAS  PubMed  Google Scholar 

  17. Hung GU, Lee KW, Chen CP, Lin WY, Yang KT. Relationship of transient ischemic dilation in dipyridamole myocardial perfusion imaging and stress-induced changes of functional parameters evaluated by Tl-201 gated SPECT. J Nucl Cardiol. 2005;12(3):268–75.

    Article  PubMed  Google Scholar 

  18. Abidov A, Bax JJ, Hayes SW, et al. Transient ischemic dilation ratio of the left ventricle is a significant predictor of future cardiac events in patients with otherwise normal myocardial perfusion SPECT. J Am Coll Cardiol. 2003;42(10):1818–25.

    Article  PubMed  Google Scholar 

  19. Lima RS, Watson DD, Goode AR, et al. Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three-vessel coronary artery disease. J Am Coll Cardiol. 2003;42(1):64–70.

    Article  PubMed  Google Scholar 

  20. Baer FM, Voth E, Theissen P, Schneider CA, Schicha H, Sechtem U. Coronary artery disease: findings with GRE MR imaging and Tc-99mmethoxyisobutyl- isonitrile SPECT during simultaneous dobutamine stress. Radiology. 1994;193(1):203–9.

    Article  CAS  PubMed  Google Scholar 

  21. Heijenbrok-Kal MH, Fleischmann KE, Hunink MG. Stress echocardiography, stress single-photon-emission computed tomography and electron beam computed tomography for the assessment of coronary artery disease: a metaanalysis of diagnostic performance. Am Heart J. 2007;154(3):415–23.

    Article  PubMed  Google Scholar 

  22. Boden WE, O’Rourke RA, Teo KK, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356(15):1503–16.

    Article  CAS  PubMed  Google Scholar 

  23. Greenwood JP, Maredia N, Younger JF, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC). A prospective trial. Lancet. 2012;379(9814):453–60.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Hundley WG, Hamilton CA, Thomas MS, et al. Utility of fast cine magnetic resonance imaging and display for the detection of myocardial ischemia in patients not well suited for second harmonic stress echocardiography. Circulation. 1999;100(16):1697–702.

    Article  CAS  PubMed  Google Scholar 

  25. Al-Saadi N, Nagel E, Gross M, et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation. 2000;101(12):1379–83.

    Article  CAS  PubMed  Google Scholar 

  26. Manning WJ, Atkinson DJ, Grossman W, Paulin S, Edelman RR. First-pass nuclear magnetic resonance imaging studies using gadolinium-DTPA in patients with coronary artery disease. J Am Coll Cardiol. 1991;18(4):959–65.

    Article  CAS  PubMed  Google Scholar 

  27. Wilke N, Jerosch-Herold M, Wang Y, et al. Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology. 1997;204(2):373–84.

    Article  CAS  PubMed  Google Scholar 

  28. Nagel E, Lehmkuhl HB, Bocksch W, et al. Noninvasive diagnosis of ischemia induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation. 1999;99(6):763–70.

    Article  CAS  PubMed  Google Scholar 

  29. Merkle N, Wohrle J, Grebe O, et al. Assessment of myocardial perfusion for detection of coronary artery stenoses by steady-state, free-precession magnetic resonance first-pass imaging. Heart. 2007;93(11):1381–5.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Dawson D, Rinkevich D, Belcik T, et al. Measurement of myocardial blood flow velocity reserve with myocardial contrast echocardiography in patients with suspected coronary artery disease: comparison with quantitative gated Technetium 99m sestamibi single photon emission computed tomography. J Am Soc Echocardiogr. 2003;16(11):1171–7.

    Article  PubMed  Google Scholar 

  31. Armstrong WF, Zoghbi WA. Stress echocardiography: current methodology and clinical applications. J Am Coll Cardiol. 2005;45(11):1739–47.

    Article  PubMed  Google Scholar 

  32. Di Carli MF, Dorbala S, Curillova Z, et al. Relationship between CT coronary angiography and stress perfusion imaging in patients with suspected ischemic heart disease assessed by integrated PET-CT imaging. J Nucl Cardiol. 2007;14(6):799–809.

    Article  PubMed  Google Scholar 

  33. Dorbala S, Hachamovitch R, Curillova Z, et al. Incremental prognostic value of gated Rb-82 positron emission tomography myocardial perfusion imaging over clinical variables and rest LVEF. JACC Cardiovasc Imaging. 2009;2(7):846–54.

    Article  PubMed Central  PubMed  Google Scholar 

  34. George RT, Silva C, Cordeiro MA, et al. Multidetector computed tomography myocardial perfusion imaging during adenosine stress. J Am Coll Cardiol. 2006;48:153–60.

    Article  PubMed  Google Scholar 

  35. George RT, Jerosch-Herold M, Silva C, et al. Quantification of myocardial perfusion using dynamic 64-detector computed tomography. Invest Radiol. 2007;42:815–22.

    Article  PubMed  Google Scholar 

  36. Kurata A, Mochizuki T, Koyama Y, et al. Myocardial perfusion imaging using adenosine triphosphate stress multi-slice spiral computed tomography: alternative to stress myocardial perfusion scintigraphy. Circ J. 2005;69:550–7.

    Article  PubMed  Google Scholar 

  37. Blankstein R, Shturman LD, Rogers IS, et al. Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. J Am Coll Cardiol. 2009;54:1072–84.

    Article  PubMed  Google Scholar 

  38. Rocha-Filho JA, Blankstein R, Shturman LD, et al. Incremental value of adenosine-induced stress myocardial perfusion imaging with dual-source CT at cardiac CT angiography. Radiology. 2010;254:410–9.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Cury RC, Magalhaes TA, Borges AC, et al. Dipyridamole stress and rest myocardial perfusion by 64-detector row computed tomography in patients with suspected coronary artery disease. Am J Cardiol. 2010;106:310–5.

    Article  PubMed  Google Scholar 

  40. Okada DR, Ghoshhajra BB, Blankstein R, et al. Direct comparison of rest and adenosine stress myocardial perfusion CT with rest and stress SPECT. J Nucl Cardiol. 2009;17:27–37.

    Article  Google Scholar 

  41. Cury RC, Kitt TM, Feaheny K, Akin J, George RT. Regadenoson-stress myocardial CT perfusion and single-photon emission CT: rationale, design, and acquisition methods of a prospective, multicenter, multivendor comparison. Cardiovasc Comput Tomogr. 2014;8(1):2–12. doi:10.1016/j.jcct.2013.09.004.

    Article  Google Scholar 

  42. George RT, Mehra VC, Chen MY, et al. Myocardial CT perfusion imaging and SPECT for the diagnosis of coronary artery disease: a head-to-head comparison from the CORE320 multicenter diagnostic performance study. Radiology. 2015;274(2):626.

    Article  PubMed  Google Scholar 

  43. Carrascosa P, Rodriguez-Granillo GA, Capuñay C, et al. Low-dose CT coronary angiography using iterative reconstruction with a 256-slice CT scanner. World J Cardiol. 2013;5(10):382–6. doi:10.4330/wjc.v5.i10.382.

    PubMed Central  PubMed  Google Scholar 

  44. Wei-Hua Yin, Bin Lu, Nan Li, et al. Iterative reconstruction to preserve image quality and diagnostic accuracy at reduced radiation dose in coronary CT angiography: an intraindividual comparison. JACC Cardiovasc Imaging. 2013;6(12):1239–49.

    Google Scholar 

  45. Ko SM, Choi JW, Song MG, et al. Myocardial perfusion imaging using adenosine-induced stress dual-energy computed tomography of the heart: comparison with cardiac magnetic resonance imaging and conventional coronary angiography. Eur Radiol. 2011;21:26–35.

    Article  PubMed  Google Scholar 

  46. Weininger M, Schoepf UJ, Ramachandra A, et al. Adenosine-stress dynamic real-time myocardial perfusion and adenosine-stress first-pass dual-energy myocardial perfusion CT for the assessment of acute chest pain: initial results. Eur J Radiol. 2012;81(12):3703–10.

    Article  PubMed  Google Scholar 

  47. Rodríguez-Granillo GA, Rosales MA, Degrossi E, et al. Signal density of left ventricular myocardial segments and impact of beam hardening artifact: implications for myocardial perfusion assessment by multidetector CT coronary angiography. Int J Cardiovasc Imaging. 2010;26(3):345–54.

    Article  PubMed  Google Scholar 

  48. So A, Hsieh J, Li JY, Lee TY. Beam hardening correction in CT myocardial perfusion measurement. Phys Med Biol. 2009;54(10):3031–50.

    Article  PubMed  Google Scholar 

  49. Kitagawa K, George RT, Arbab-Zadeh A, et al. Characterization and correction of beam-hardening artifacts during dynamic volume CT assessment of myocardial perfusion. Radiology. 2010;256:111–8.

    Article  PubMed  Google Scholar 

  50. Arnoldi E, Lee YS, Ruzsics B, et al. Ct detection of myocardial blood volumen déficits: dual-energy CT compared with single energy Ct spectra. J Cardiovasc Comput Tomogr. 2011;5(6):421–9.

    Article  PubMed  Google Scholar 

  51. Weininger M, Schoepf J, Ramachandra A, et al. Adenosine-stress dynamic real-time myocardial perfusion CT and adenosine-stress first-pass dual-energy myocardial perfusion CT for the assessment of acute chest pain: initial results. Eur J Radiol. 2012;81:3703–10.

    Article  PubMed  Google Scholar 

  52. Ruzsics B, Schwarz F, Schoepf UJ, et al. Comparison of dual-energy computed tomography of the heart with single photon emission computed tomography for assessment of coronary artery stenosis and of the myocardial blood supply. Am J Cardiol. 2009;104:318–26.

    Article  PubMed  Google Scholar 

  53. Ruzsics B, Lee H, Zwerner PL et al. Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia-initial experience. Eur Radiol. 2008;18(11):2414–24.

    Google Scholar 

  54. So A, Lee T-Y, Imai Y, et al. Quantitative myocardial perfusion imaging using rapid kVp switch dual-energy CT: preliminary experience. J Cardiovasc Comput Tomogr. 2011;5:430–42.

    Article  PubMed  Google Scholar 

  55. So A, Lee TY. Quantitative myocardial CT perfusion: a pictorial review and the current state of technology development. J Cardiovasc Comput Tomogr. 2011;5(6):467–81.

    Article  PubMed  Google Scholar 

  56. So A, Hsieh JH, Naarayanan S, et al. Dual energy CT and its potential use for quantitative myocardial CT perfusion. J Cardiovasc Comput Tomogr. 2012;6:308–17.

    Article  PubMed  Google Scholar 

  57. Schwarz F, Ruzsics B, Schoepf UJ, et al. Dual-energy CT of the heart – principles and protocols. Eur J Radiol. 2008;68(3):423–33.

    Article  PubMed  Google Scholar 

  58. Matsumoto K, Jinzaki M, Tanami Y, Ueno A, Yamada M, Kuribayashi S. Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology. 2011;259(1):257–62.

    Article  PubMed  Google Scholar 

  59. Yu L, Primak AN, Liu X, McCollough CH. Image quality optimization and evaluation of linearly mixed images in dual-source, dual-energy CT. Med Phys. 2009;36:1019–24.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Johnson TR, Krauss B, Sedlmair M, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17(6):1510–7.

    Article  PubMed  Google Scholar 

  61. Vliegenthart P, Pelegrini GJ, Ebersberger U, et al. Dual energy CT of the heart. AJR. 2012;199(suppl5):s54–63.

    Article  PubMed  Google Scholar 

  62. Kang DK, Schoepf UJ, Bastarrika G, et al. Dual-energy computed tomography for integrative imaging of coronary artery disease: principles and clinical applications. Semin Ultrasound CT MR. 2010;31:276–91.

    Article  PubMed  Google Scholar 

  63. Rodriguez Granillo G, Carrascosa P, Ciprinao S, et al. Beam hardening artifact reduction using dual energy computed tomography: implications for myocardial perfusion studies. Cardiovasc Diagn Ther. 2015;5(1):79–85.

    Google Scholar 

  64. Wang R, Yu W, Wang Y, et al. Incremental value of dual-energy CT to coronary CT angiography for the detection of significant coronary stenosis: comparison with quantitative coronary angiography and single photon emission computed tomography. Int J Cardiovasc Imaging. 2011;27:647–56.

    Article  CAS  PubMed  Google Scholar 

  65. Meyer M, Nance Jr JW, Schoepf UJ, et al. Cost-effectiveness of substituting dual-energy CT for SPECT in the assessment of myocardial perfusion for the workup of coronary artery disease. Eur J Radiol. 2012;81(12):3719–25.

    Article  PubMed  Google Scholar 

  66. Meinel F, Cecco C, Schoepf UJ, et al. First–arterial-pass dual-energy CT for assessment of myocardial blood supply: do we need rest, stress, and delayed acquisition? Comparison with SPECT. Radiology. 2014;270(3):708–16.

    Article  PubMed  Google Scholar 

  67. Ko S, Choi JW, Hwang HK, et al. Diagnostic performance of combined noninvasive anatomic and functional assessment with dual source CT and adenosine induced stress dual energy CT for detection of significant coronary stenosis. AJR. 2012;198:512–20.

    Article  PubMed  Google Scholar 

  68. Kido T, Watanabe K, Saeki H. Adenosine triphosphate stress dual source computed tomography to identify myocardial ischemia: comparison with invasive coronary angiography. Springer Plus. 2014;3:75.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Carrascosa P, Cury R, Deviggiano A et al. Myocardial perfusion evaluation with single versus dual energy CT: impact of beam hardening artifacts. Acad Radiol. 2015;22(5):591–9 .

    Google Scholar 

  70. Carrascosa P, Deviggiano A, Capuñay C, et al. Incremental value of myocardial perfusion over coronary angiography by spectral computed tomography in patients with intermediate to high likelihood of coronary artery disease. Eur J Radiol. 2015;84(4):637–42. doi:10.1016/j.ejrad.2014.12.013.

  71. De Cecco C, Harris B, Schoepf U, et al. Incremental value of pharmacological stress cardiac dual-energy CT over coronary CT angiography alone for the assessment of coronary artery disease in a high-risk population. AJR. 2014;203:70–7.

    Article  Google Scholar 

  72. Zhang L-J, Peng J, Wu S-Y, Yeh BM, Zhou C-S, Lu G-M. Dual source dual-energy computed tomography of acute myocardial infarction: correlation with histopathologic findings in a canine model. Invest Radiol. 2010;45:290–7.

    PubMed  Google Scholar 

  73. Deseive S, Bauer RW, Lehmann R, et al. Dual energy computed tomography for the detection of late enhancement in reperfused chronic infarction: a comparison to magnetic resonance imaging. and histopathology in a porcine model. Invest Radiol. 2011;46:450–6.

    Article  PubMed  Google Scholar 

  74. Mahnken AH, Lautenschlager S, Fritz D, Koos R, Scheuering M. Perfusion weighted color maps for enhanced visualization of myocardial infarction by MSCT: preliminary experience. Int J Cardiovasc Imaging. 2008;24:883–90.

    Article  PubMed  Google Scholar 

  75. Rubinshtein R, Miller TD, Williamson EE, et al. Detection of myocardial infarction by dual-source coronary computer tomography angiography using quantitated myocardial scintigraphy as the reference standard. Heart. 2009;95:1419–22.

    Article  CAS  PubMed  Google Scholar 

  76. Henneman MM, Schuijf JD, Dibbets-Schneider P, et al. Comparison of multislice computed tomography to gated single-photon emission computed tomography for imaging of healed myocardial infarcts. Am J Cardiol. 2008;101:144–8.

    Article  PubMed  Google Scholar 

  77. Kerl JM, Deseive S, Tandi C, et al. Dual energy CT for the assessment of reperfused chronic infarction: a feasibility study in a porcine model. Acta Radiol. 2011;52:834–9.

    Article  PubMed  Google Scholar 

  78. Bauer R, Kerl J, Fischer N, et al. Dual Energy CT for te assessment of chronic myocardial infarction in patients with Chronic coronary artery disease: comparison with 3T MRI. AJR. 2010;195:639–46.

    Article  PubMed  Google Scholar 

  79. Truong QA, Knaapen P, Pontone G et al. Rationale and design of the dual-energy computed tomography for ischemia determination compared to “gold standard” non-invasive and invasive techniques (DECIDE-Gold): a multicenter international efficacy diagnostic study of rest-stress dual-energy computed tomography angiography with perfusion. J Nucl Cardiol. 2014 Dec 31. [Epub ahead of print].

    Google Scholar 

  80. Mettler Jr FA, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248(1):254–63.

    Article  PubMed  Google Scholar 

  81. Henzler T, Fink C, Schoenberg S. Dual-energy CT: radiation dose aspects. AJR. 2012;199:S16–25.

    Article  PubMed  Google Scholar 

  82. Shuman W, Branch K, May J, et al. Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: 437 comparison of image quality and patient radiation dose1. Radiology. 2008;248:431.

    Article  PubMed  Google Scholar 

  83. Christner J, Kofler J, McCollough C. Estimating effective dose for ct using dose–length product compared with using organ doses: consequences of adopting international commission on radiological protection publication 103 or dual-energy scanning. AJR. 2010;194:881–9.

    Article  PubMed  Google Scholar 

  84. Schenzle JC, Sommer WH, Neumaier K, et al. Dual energy CT of the chest: how about the dose? Invest Radiol. 2010;45:347–53.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia M. Carrascosa MD, PhD, FSCCT .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carrascosa, P.M., Cury, R.C. (2015). Myocardial Perfusion by Dual Energy CT. In: Carrascosa, P., Cury, R., García, M., Leipsic, J. (eds) Dual-Energy CT in Cardiovascular Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-21227-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21227-2_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21226-5

  • Online ISBN: 978-3-319-21227-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics