Skip to main content

Dual Energy CT Imaging for the Assessment of Coronary Artery Stenosis

  • Chapter
Dual-Energy CT in Cardiovascular Imaging

Abstract

Computed tomography coronary angiography (CTCA) has emerged as an accurate means to evaluate coronary atherosclerosis, not only the lumen but the vessel wall as well. In fact, CTCA is more closely related to intravascular ultrasound than to invasive angiography. Conventional CTCA remains limited by a number of technical, patient-related, or lesion specific issues that preclude the accurate extrapolation of the overall well established diagnostic performance of CTCA to the real world scenario. These limitations include the complex discrimination between calcified plaques and luminal opacification that hamper the precise quantification of densely calcified lesions. Dual energy CT has emerged as a novel approach that aims to evaluate coronary artery disease with a more accurate assessment of plaque thus potentially improving the overall diagnostic performance. DECT has the potential to analyze the information using two different approaches: (1) monochromatic evaluation; and (2) material decomposition. The present chapter discusses the available evidence in this regard among different scenarios including evaluation of de novo lesions, plaque characterization, triage of patients with acute chest pain, and evaluation of patients with previous percutaneous or surgical revascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Go AS, Mozaffarian D, Roger VL, et al. Executive summary: heart disease and stroke statistics – 2013 update: a report from the American Heart Association. Circulation. 2013;127:143–52.

    Article  PubMed  Google Scholar 

  2. Carrascosa PM, Capunay CM, Garcia-Merletti P, Carrascosa J, Garcia MF. Characterization of coronary atherosclerotic plaques by multidetector computed tomography. Am J Cardiol. 2006;97:598–602.

    Article  PubMed  Google Scholar 

  3. Rodriguez-Granillo GA, Rosales MA, Degrossi E, Durbano I, Rodriguez AE. Multislice CT coronary angiography for the detection of burden, morphology and distribution of atherosclerotic plaques in the left main bifurcation. Int J Cardiovasc Imaging. 2007;23:389–92.

    Article  PubMed  Google Scholar 

  4. Rodriguez Granillo GA. Non-invasive assessment of vulnerable plaque. Expert Opin Med Diagn. 2009;3:53–66.

    Article  PubMed  Google Scholar 

  5. Ambrose JA, Tannenbaum MA, Alexopoulos D, et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol. 1988;12:56–62.

    Article  CAS  PubMed  Google Scholar 

  6. Glaser R, Selzer F, Faxon DP, et al. Clinical progression of incidental, asymptomatic lesions discovered during culprit vessel coronary intervention. Circulation. 2005;111:143–9.

    Article  PubMed  Google Scholar 

  7. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262–75.

    Article  CAS  PubMed  Google Scholar 

  8. Rodriguez-Granillo GA, Regar E, Schaar JA, Serruys PW. New insights towards catheter-based identification of vulnerable plaque. Rev Esp Cardiol. 2005;58:1197–206.

    Article  PubMed  Google Scholar 

  9. Rodriguez-Granillo GA, Agostoni P, Garcia-Garcia HM, de Feyter P, Serruys PW. In-vivo, cardiac-cycle related intimal displacement of coronary plaques assessed by 3-D ECG-gated intravascular ultrasound: exploring its correlate with tissue deformability identified by palpography. Int J Cardiovasc Imaging. 2006;22:147–52.

    Article  PubMed  Google Scholar 

  10. Asakura M, Ueda Y, Yamaguchi O, et al. Extensive development of vulnerable plaques as a pan-coronary process in patients with myocardial infarction: an angioscopic study. J Am Coll Cardiol. 2001;37:1284–8.

    Article  CAS  PubMed  Google Scholar 

  11. Rodriguez-Granillo GA, Garcia-Garcia HM, Valgimigli M, et al. Global characterization of coronary plaque rupture phenotype using three-vessel intravascular ultrasound radiofrequency data analysis. Eur Heart J. 2006;27:1921–7.

    Article  PubMed  Google Scholar 

  12. Rodriguez-Granillo GA, Garcia-Garcia HM, Mc Fadden EP, et al. In vivo intravascular ultrasound-derived thin-cap fibroatheroma detection using ultrasound radiofrequency data analysis. J Am Coll Cardiol. 2005;46:2038–42.

    Article  PubMed  Google Scholar 

  13. Rodriguez-Granillo GA, Garcia-Garcia HM, Valgimigli M, et al. In vivo relationship between compositional and mechanical imaging of coronary arteries. Insights from intravascular ultrasound radiofrequency data analysis. Am Heart J. 2006;151:1025 e1–6.

    PubMed  Google Scholar 

  14. Fischer C, Hulten E, Belur P, Smith R, Voros S, Villines TC. Coronary CT angiography versus intravascular ultrasound for estimation of coronary stenosis and atherosclerotic plaque burden: a meta-analysis. J Cardiovasc Comput Tomogr. 2013;7:256–66.

    Article  PubMed  Google Scholar 

  15. Brodoefel H, Burgstahler C, Tsiflikas I, et al. Dual-source CT: effect of heart rate, heart rate variability, and calcification on image quality and diagnostic accuracy. Radiology. 2008;247:346–55.

    Article  PubMed  Google Scholar 

  16. Cademartiri F, Mollet NR, Runza G, et al. Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: observations in an ex vivo model of coronary computed tomography angiography. Eur Radiol. 2005;15:1426–31.

    Article  PubMed  Google Scholar 

  17. Ruzsics B, Lee H, Zwerner PL, Gebregziabher M, Costello P, Schoepf UJ. Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia-initial experience. Eur Radiol. 2008;18:2414–24.

    Article  PubMed  Google Scholar 

  18. Kang DK, Schoepf UJ, Bastarrika G, Nance Jr JW, Abro JA, Ruzsics B. Dual-energy computed tomography for integrative imaging of coronary artery disease: principles and clinical applications. Semin Ultrasound CT MR. 2010;31:276–91.

    Article  PubMed  Google Scholar 

  19. Carrascosa P, Capunay C, Rodriguez-Granillo GA, Deviggiano A, Vallejos J, Leipsic JA. Substantial iodine volume load reduction in CT angiography with dual-energy imaging: insights from a pilot randomized study. Int J Cardiovasc Imaging. 2014;30:1613–20.

    Article  PubMed  Google Scholar 

  20. Raju R, Thompson AG, Lee K, et al. Reduced iodine load with CT coronary angiography using dual-energy imaging: a prospective randomized trial compared with standard coronary CT angiography. J Cardiovasc Comput Tomogr. 2014;8:282–8.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Rodriguez-Granillo GA, Rosales MA, Degrossi E, Rodriguez AE. Signal density of left ventricular myocardial segments and impact of beam hardening artifact: implications for myocardial perfusion assessment by multidetector CT coronary angiography. Int J Cardiovasc Imaging. 2010;26:345–54.

    Article  PubMed  Google Scholar 

  22. Scheske JA, O’Brien JM, Earls JP, et al. Coronary artery imaging with single-source rapid kilovolt peak-switching dual-energy CT. Radiology. 2013;268:702–9.

    Article  PubMed  Google Scholar 

  23. Miller JM, Rochitte CE, Dewey M, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359:2324–36.

    Article  CAS  PubMed  Google Scholar 

  24. Yamada Y, Jinzaki M, Okamura T, et al. Feasibility of coronary artery calcium scoring on virtual unenhanced images derived from single-source fast kVp-switching dual-energy coronary CT angiography. J Cardiovasc Comput Tomogr. 2014;8:391–400.

    Article  PubMed  Google Scholar 

  25. Carrascosa P, De Zan M, Capunay C, Namias M, Deviggiano A, Cipriano S, Rodriguez-Granillo G, Vallejos J (2014) Coronary artery calcium quantification based on virtual non-contrast dual energy CT data sets. J Cardiovasc Comput Tomogr. 9th annual scientific meeting Abstracts. S1–88.

    Google Scholar 

  26. Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA. Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol. 2005;46:552–7.

    Article  PubMed  Google Scholar 

  27. Meijboom WB, Meijs MF, Schuijf JD, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008;52:2135–44.

    Article  PubMed  Google Scholar 

  28. Shaw LJ, Hausleiter J, Achenbach S, et al. Coronary computed tomographic angiography as a gatekeeper to invasive diagnostic and surgical procedures: results from the multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: an International Multicenter) registry. J Am Coll Cardiol. 2012;60:2103–14.

    Article  PubMed  Google Scholar 

  29. Meijboom WB, van Mieghem CA, Mollet NR, et al. 64-slice computed tomography coronary angiography in patients with high, intermediate, or low pretest probability of significant coronary artery disease. J Am Coll Cardiol. 2007;50:1469–75.

    Article  PubMed  Google Scholar 

  30. Ong TK, Chin SP, Liew CK, et al. Accuracy of 64-row multidetector computed tomography in detecting coronary artery disease in 134 symptomatic patients: influence of calcification. Am Heart J. 2006;151:1323 e1–6.

    PubMed  Google Scholar 

  31. Vavere AL, Arbab-Zadeh A, Rochitte CE, et al. Coronary artery stenoses: accuracy of 64-detector row CT angiography in segments with mild, moderate, or severe calcification – a subanalysis of the CORE-64 trial. Radiology. 2011;261:100–8.

    Article  PubMed Central  PubMed  Google Scholar 

  32. So A, Lee TY, Imai Y, et al. Quantitative myocardial perfusion imaging using rapid kVp switch dual-energy CT: preliminary experience. J Cardiovasc Comput Tomogr. 2011;5:430–42.

    Article  PubMed  Google Scholar 

  33. Secchi F, De Cecco CN, Spearman JV, Silverman JR, Ebersberger U, Sardanelli F, Schoepf UJ. Monoenergetic extrapolation of cardiac dual energy CT for artifact reduction. Acta Radiol. 2015;56(4):413–8.

    Google Scholar 

  34. So A, Hsieh J, Narayanan S, et al. Dual-energy CT and its potential use for quantitative myocardial CT perfusion. J Cardiovasc Comput Tomogr. 2012;6:308–17.

    Article  PubMed  Google Scholar 

  35. Schoepf U, Abbara S, Nikolaou, K. ISP: cardiac (dual energy). Radiological Society of North America. Scientific assembly and annual meeting. Radiological Society of North America: Chicago; 25 Nov–30 Nov 2012.

    Google Scholar 

  36. Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364:226–35.

    Article  CAS  PubMed  Google Scholar 

  37. Rodriguez-Granillo GA, McFadden EP, Valgimigli M, et al. Coronary plaque composition of nonculprit lesions, assessed by in vivo intracoronary ultrasound radio frequency data analysis, is related to clinical presentation. Am Heart J. 2006;151:1020–4.

    Article  PubMed  Google Scholar 

  38. Kashiwagi M, Tanaka A, Kitabata H, et al. Feasibility of noninvasive assessment of thin-cap fibroatheroma by multidetector computed tomography. JACC Cardiovasc Imaging. 2009;2:1412–9.

    Article  PubMed  Google Scholar 

  39. Maurovich-Horvat P, Hoffmann U, Vorpahl M, Nakano M, Virmani R, Alkadhi H. The napkin-ring sign: CT signature of high-risk coronary plaques? JACC Cardiovasc Imaging. 2010;3:440–4.

    Article  PubMed  Google Scholar 

  40. van Velzen JE, de Graaf FR, de Graaf MA, et al. Comprehensive assessment of spotty calcifications on computed tomography angiography: comparison to plaque characteristics on intravascular ultrasound with radiofrequency backscatter analysis. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2011;18:893–903.

    Article  Google Scholar 

  41. Rodriguez-Granillo GA, Serruys PW, Garcia-Garcia HM, et al. Coronary artery remodelling is related to plaque composition. Heart. 2006;92:388–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Miyamoto Y, Okura H, Kume T, et al. Plaque characteristics of thin-cap fibroatheroma evaluated by OCT and IVUS. JACC Cardiovasc Imaging. 2011;4:638–46.

    Article  PubMed  Google Scholar 

  43. Leber AW, Knez A, von Ziegler F, et al. Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol. 2005;46:147–54.

    Article  PubMed  Google Scholar 

  44. Kruk M, Wardziak L, Mintz GS, et al. Accuracy of coronary computed tomography angiography vs intravascular ultrasound for evaluation of vessel area. J Cardiovasc Comput Tomogr. 2014;8:141–8.

    Article  PubMed  Google Scholar 

  45. Motoyama S, Sarai M, Harigaya H, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54:49–57.

    Article  PubMed  Google Scholar 

  46. Primak AN, Fletcher JG, Vrtiska TJ, et al. Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT. Acad Radiol. 2007;14:1441–7.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Kim YK, Park BK, Kim CK, Park SY. Adenoma characterization: adrenal protocol with dual-energy CT. Radiology. 2013;267:155–63.

    Article  PubMed  Google Scholar 

  48. Henzler T, Porubsky S, Kayed H, et al. Attenuation-based characterization of coronary atherosclerotic plaque: comparison of dual source and dual energy CT with single-source CT and histopathology. Eur J Radiol. 2011;80:54–9.

    Article  PubMed  Google Scholar 

  49. Tanami Y, Ikeda E, Jinzaki M, et al. Computed tomographic attenuation value of coronary atherosclerotic plaques with different tube voltage: an ex vivo study. J Comput Assist Tomogr. 2010;34:58–63.

    Article  PubMed  Google Scholar 

  50. Barreto M, Schoenhagen P, Nair A, et al. Potential of dual-energy computed tomography to characterize atherosclerotic plaque: ex vivo assessment of human coronary arteries in comparison to histology. J Cardiovasc Comput Tomogr. 2008;2:234–42.

    Article  PubMed  Google Scholar 

  51. Obaid DR, Calvert PA, Gopalan D, et al. Dual-energy computed tomography imaging to determine atherosclerotic plaque composition: a prospective study with tissue validation. J Cardiovasc Comput Tomogr. 2014;8:230–7.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Carrascosa P, Deviggiano A, Capunay C, De Zan MC, Goldsmit A, Rodriguez-Granillo GA. Effect of intracycle motion correction algorithm on image quality and diagnostic performance of computed tomography coronary angiography in patients with suspected coronary artery disease. Acad Radiol. 2015;21(1):81–6.

    Google Scholar 

  53. Yamak D, Panse P, Pavlicek W, Boltz T, Akay M. Non-calcified coronary atherosclerotic plaque characterization by dual energy computed tomography. IEEE J Biomed Health Inf. 2014;18:939–45.

    Article  Google Scholar 

  54. Christenson J, Innes G, McKnight D, et al. Safety and efficiency of emergency department assessment of chest discomfort. CMAJ Can Med Assoc J J Assoc Med Can. 2004;170:1803–7.

    Article  Google Scholar 

  55. Goldstein JA, Chinnaiyan KM, Abidov A, et al. The CT-STAT (coronary computed tomographic angiography for systematic triage of acute chest pain patients to treatment) trial. J Am Coll Cardiol. 2011;58:1414–22.

    Article  PubMed  Google Scholar 

  56. Litt HI, Gatsonis C, Snyder B, et al. CT angiography for safe discharge of patients with possible acute coronary syndromes. N Engl J Med. 2012;366:1393–403.

    Article  CAS  PubMed  Google Scholar 

  57. Hoffmann U, Truong QA, Schoenfeld DA, et al. Coronary CT angiography versus standard evaluation in acute chest pain. N Engl J Med. 2012;367:299–308.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Hulten E, Pickett C, Bittencourt MS, et al. Outcomes after coronary computed tomography angiography in the emergency department: a systematic review and meta-analysis of randomized, controlled trials. J Am Coll Cardiol. 2013;61:880–92.

    Article  PubMed  Google Scholar 

  59. Cury RC, Feuchtner GM, Batlle JC, et al. Triage of patients presenting with chest pain to the emergency department: implementation of coronary CT angiography in a large urban health care system. AJR Am J Roentgenol. 2013;200:57–65.

    Article  PubMed  Google Scholar 

  60. Taylor AJ, Cerqueira M, Hodgson JM, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol. 2010;56:1864–94.

    Article  PubMed  Google Scholar 

  61. Hamm CW, Bassand JP, Agewall S, et al. ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the task force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2011;32:2999–3054.

    Article  PubMed  Google Scholar 

  62. Wright RS, Anderson JL, Adams CD, et al. 2011 ACCF/AHA focused update incorporated into the ACC/AHA 2007 guidelines for the Management of Patients with Unstable Angina/Non-ST-Elevation Myocardial Infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in collaboration with the American Academy of Family Physicians, Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons. J Am Coll Cardiol. 2011;57:e215–367.

    Article  PubMed  Google Scholar 

  63. Weininger M, Schoepf UJ, Ramachandra A, et al. Adenosine-stress dynamic real-time myocardial perfusion CT and adenosine-stress first-pass dual-energy myocardial perfusion CT for the assessment of acute chest pain: initial results. Eur J Radiol. 2012;81:3703–10.

    Google Scholar 

  64. Wang R, Yu W, Wang Y, et al. Incremental value of dual-energy CT to coronary CT angiography for the detection of significant coronary stenosis: comparison with quantitative coronary angiography and single photon emission computed tomography. Int J Cardiovasc Imaging. 2011;27:647–56.

    Article  CAS  PubMed  Google Scholar 

  65. Andreini D, Pontone G, Mushtaq S, Pepi M, Bartorelli AL. Multidetector computed tomography coronary angiography for the assessment of coronary in-stent restenosis. Am J Cardiol. 2010;105:645–55.

    Article  PubMed  Google Scholar 

  66. Rixe J, Achenbach S, Ropers D, et al. Assessment of coronary artery stent restenosis by 64-slice multi-detector computed tomography. Eur Heart J. 2006;27:2567–72.

    Article  PubMed  Google Scholar 

  67. Ehara M, Kawai M, Surmely JF, et al. Diagnostic accuracy of coronary in-stent restenosis using 64-slice computed tomography: comparison with invasive coronary angiography. J Am Coll Cardiol. 2007;49:951–9.

    Article  PubMed  Google Scholar 

  68. Cademartiri F, Schuijf JD, Pugliese F, et al. Usefulness of 64-slice multislice computed tomography coronary angiography to assess in-stent restenosis. J Am Coll Cardiol. 2007;49:2204–10.

    Article  PubMed  Google Scholar 

  69. Pugliese F, Weustink AC, Van Mieghem C, et al. Dual source coronary computed tomography angiography for detecting in-stent restenosis. Heart. 2008;94:848–54.

    Article  CAS  PubMed  Google Scholar 

  70. Maintz D, Burg MC, Seifarth H, et al. Update on multidetector coronary CT angiography of coronary stents: in vitro evaluation of 29 different stent types with dual-source CT. Eur Radiol. 2009;19:42–9.

    Article  PubMed  Google Scholar 

  71. Zou Y, Silver MD. Elimination of blooming artifacts off stents by dual energy CT. Proc SPIE 7258, medical imaging 2009: physics of medical imaging, 72581X (12 Mar 2009); doi:101117/12811696.

  72. Zhao J, Zheng LL, Yang Y. Evaluation of coronary artery in-stent patency using 64-slice computed tomography. Coron Artery Dis. 2011;22:540–52.

    Article  PubMed  Google Scholar 

  73. Andreini D, Pontone G, Bartorelli AL, et al. Comparison of feasibility and diagnostic accuracy of 64-slice multidetector computed tomographic coronary angiography versus invasive coronary angiography versus intravascular ultrasound for evaluation of in-stent restenosis. Am J Cardiol. 2009;103:1349–58.

    Article  PubMed  Google Scholar 

  74. Malago R, Pezzato A, Barbiani C, et al. Comparison between different kernel reformatting filters in 3D quantitative analysis of MDCT coronary angiography. Radiol Med. 2011;116:1203–16.

    Article  CAS  PubMed  Google Scholar 

  75. Mahnken AH, Buecker A, Wildberger JE, et al. Coronary artery stents in multislice computed tomography: in vitro artifact evaluation. Invest Radiol. 2004;39:27–33.

    Article  PubMed  Google Scholar 

  76. Maintz D, Seifarth H, Raupach R, et al. 64-slice multidetector coronary CT angiography: in vitro evaluation of 68 different stents. Eur Radiol. 2006;16:818–26.

    Article  PubMed  Google Scholar 

  77. Malagutti P, Nieman K, Meijboom WB, et al. Use of 64-slice CT in symptomatic patients after coronary bypass surgery: evaluation of grafts and coronary arteries. Eur Heart J. 2007;28:1879–85.

    Article  PubMed  Google Scholar 

  78. Weustink AC, Nieman K, Pugliese F, et al. Diagnostic accuracy of computed tomography angiography in patients after bypass grafting: comparison with invasive coronary angiography. JACC Cardiovasc Imaging. 2009;2:816–24.

    Article  PubMed  Google Scholar 

  79. Hassan A, Nazir SA, Alkadhi H. Technical challenges of coronary CT angiography: today and tomorrow. Eur J Radiol. 2011;79:161–71.

    Article  PubMed  Google Scholar 

  80. Otton JM, Phan J, Feneley M, Yu CY, Sammel N, McCrohon J. Defining the mid-diastolic imaging period for cardiac CT – lessons from tissue Doppler echocardiography. BMC Med Imaging. 2013;13:5.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Ohashi K, Ichikawa K, Hara M, et al. Examination of the optimal temporal resolution required for computed tomography coronary angiography. Radiol Phys Technol. 2013;6:453–60.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gastón A. Rodriguez-Granillo MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rodriguez-Granillo, G.A., Carrascosa, P.M., García, M.J. (2015). Dual Energy CT Imaging for the Assessment of Coronary Artery Stenosis. In: Carrascosa, P., Cury, R., García, M., Leipsic, J. (eds) Dual-Energy CT in Cardiovascular Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-21227-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21227-2_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21226-5

  • Online ISBN: 978-3-319-21227-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics