Skip to main content

Wind Rendering in 3D Modeling Landscape Scenes

  • Chapter
  • First Online:
Intelligent Decision Technology Support in Practice

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 42))

  • 734 Accesses

Abstract

The modeling of 3D landscape scenes includes two main issues: the creation of landscape scene and the natural effects rendering. A hybrid approach based on laser data scanning and templates of L-systems was developed to design trees and brush of various types and sizes. The space colonization algorithm was applied to make the tree models realistic and compact described and stored. Wind rendering is a necessary procedure, without which any modeling scene looks non-realistic. Three algorithms for wind rendering under changeable parameters were proposed. They have a minimal computational cost and simulate weak wind, mid-force wind, and storm wind. The approach based on mega-texture visualization was used to make a 3D landscape scene with wind effects a real-time application. The user can tune the various trees and wind parameters and manipulate a modeling scene by using the software tool “REWELS” designed in the development environment RAD Studio 2010.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    OpenGL Performer Programmer’s Guide: ClipTextures. Available online, at http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi?coll=0650&db=bks&srch=&fname=/GI_Developer/Perf_PG/sgi_html/ch15.html.

References

  1. Zhang, Q.L., Pang, M.-Y.: A survey of modeling and rendering trees. In: Pan, Z., Zhang, X., Rhalibi, A.E., Woo, W., Li, Y. (eds) Technologies for E-Learning and Digital Entertainment, LNCS Edutainment, pp. 757–764. Springer Link, Heidelberg (2008)

    Google Scholar 

  2. Qu, H., Wang, Y., Cai, L., Wang, T., Lu, Z.: Orange tree simulation under heterogeneous environment using agent-based model ORASIM. Simul. Model. Pract. Theory 23, 1935 (2012)

    Article  Google Scholar 

  3. Neubert, B., Pirk, S., Deussenl, O., Dachsbacher, C.: Improved model- and view-dependent pruning of large botanical scenes. Comput. Graph. Forum 30(6), 1708–1718 (2011)

    Article  Google Scholar 

  4. Lindenmayer, A.: Mathematical models for cellular interaction in development. J. Theor. Biol. 18(3), 300–315 (1968)

    Article  Google Scholar 

  5. Talton, J.O., Lou, Y., Lesser, S., Duke, J., Mech, R., Koltun, V.: Metropolis procedural modeling. ACM Trans. Graph. 30(11), 114 (2011)

    Google Scholar 

  6. Xu, L., Mould, D.: A procedural method for irregular tree models. Comp. Graph. 36(8), 1036–1047 (2012)

    Article  Google Scholar 

  7. Anastacio, F., Sousa, M.C., Samavati, F., Jorge, J.A.: Modeling plant structures using concept sketches. In: 4th International Symposium on Non-Photorealistic Animation and Rendering (NPAR ÃÅ06), ACM, 105–113 (2006)

    Google Scholar 

  8. Chen, X., Neubert, B., Xu, Y.-Q., Deussen, O., Kang, S.B.: Sketch-based tree modeling using markov random field. ACM Trans. Graph. 27(5), 19 (2008)

    Article  Google Scholar 

  9. Reche, A., Martin, I., Drettakis, G.: Volumetric reconstruction and interactive rendering of trees from photographs. ACM (SIGGRAPH-04) 720–727 (2004)

    Google Scholar 

  10. Anastacio, F., Prusinkiewicz, P., Sousa, M.C.: Sketch-based parameterization of L-systems using illustration-inspired construction lines and depth modulation. Comput. Graph. 33(4), 440–451 (2009)

    Article  Google Scholar 

  11. Assa, J., Cohen-Or, D.: More of the same: synthesizing a variety by structural layering. Comput. Graph. 36(4), 250–256 (2012)

    Article  Google Scholar 

  12. Xu, H., Gossett, N., Chen, B.: Knowledge and heuristic-based modeling of laser-scanned trees. ACM Trans. Graph. 26(4), 1931 (2007)

    Article  Google Scholar 

  13. Livny, Y., Yan, F., Olson, M., Chen, B., Zhang, H., El-Sana, J.: Automatic reconstruction of tree skeletal structures from point clouds. ACM Trans. Graph. 29(151), 18 (2010)

    Google Scholar 

  14. Jaakkola, A., Hyyppa, J., Kukko, A., Yu, X., Kaartinen, H., Lehtomaki, M., Lin, Y.: A low-cost multi-sensorial mobile mapping system and its feasibility for tree measurements. J. Photogrammetry Remote Sens. 65, 514–522 (2010)

    Article  Google Scholar 

  15. Habel, R., Kusternig, A., Wimmer, M.: Physically guided animation of trees. Eurographics 28(2), 523–532 (2009)

    Google Scholar 

  16. Akagi, Y., Kitajima, K.: Computer animations of swaying trees based on physical animation. Comp. Graph. 30(4), 529–539 (2006)

    Article  Google Scholar 

  17. Chuang, Y.Y., Goldman, D.B., Zheng, K.C., Curless, B., Salesin, D.H., Szeliski, R.: Animating pictures with stochastic motion textures. ACM Trans. Graph. 24(3), 853–860 (2005)

    Google Scholar 

  18. Zhang, L., Zhang, Y., Jiang, Z., Li, L., Chen, W., Peng, Q.: Precomputing data-driven tree animation. Comp. Anim. Virtual Worlds 18(4–5), 371–382 (2007)

    Article  Google Scholar 

  19. Fugmann, H., Schindler, D., Mayer, H.: A dynamic tree sway model. In: 2nd International Conference Wind Effects on Trees, pp. 269–275 (2009)

    Google Scholar 

  20. Newson, T., Sagi, P., Miller, C., Mitchell, S.: Application of yield surfaces in three-dimensional VHM load space to the stability of trees under wind loading. In: 2nd International Conference Wind Effects on Trees, pp. 141–147 (2009)

    Google Scholar 

  21. Peltola, H., Kellomaki, S.: A mechanistic model for calculating windthrow and stem breakage at stand edge. Silva Fennica 27, 99111 (1993)

    Google Scholar 

  22. Seidl, R., Rammera, W., Blennow, K.: Simulating wind disturbance impacts on forest landscapes: tree-level heterogeneity matters. Environ. Model. Softw. 51, 111 (2014)

    Article  Google Scholar 

  23. Hale, S.E., Gardiner, B.A., Wellpott, A., Nicoll, B.C., Achim, A.: Wind loading of trees: influence of tree size and competition. Eur. J. For. Res. 131, 203217 (2012)

    Article  Google Scholar 

  24. Seidl, R., Rammer, W., Scheller, R.M.: Spies TA an individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecol. Model. 231, 87100 (2012)

    Article  Google Scholar 

  25. Seidl, R., Spies, T.A., Rammer, W., Steel, E.A., Pabst, R.J., Olsen, K.: Multi-scale drivers of spatial variation in old-growth forest carbon density disentangled with Lidar and an indi-vidual-based landscape model. Ecosystems 15, 13211335 (2012)

    Article  Google Scholar 

  26. Bunting, P., Armston, J., Lucas, R.M., Clewley, D.: Sorted pulse data (SPD) library. Part I: a generic file format for LiDAR data from pulsed laser systems in terrestrial environments. Comput. Geosci. 56, 197206 (2013)

    Google Scholar 

  27. Favorskaya, M., Zotin, A., Danilin, I., Smolentcheva, S.: Realistic 3D-modeling of forest growth with natural effect. In: Phillips-Wren, G., Jain, L.C., Nakamatsu, K., Howlett, R.J. (eds.) Advances in Intelligent Decision Technologies in Smart Innovation, Systems and Technologies, p. 191199. Springer, Heidelberg (2010)

    Google Scholar 

  28. Runions, A., Lane, B., Prusinkiewicz, P.: Modeling trees with a space colonization algorithm. In: Eurographics Workshop on Natural Phenomena, p. 6370 (2007)

    Google Scholar 

  29. de Lima Bicho, A., Rodrigues, R.A., Musse, S.R., Jung, C.R., Paravisi, M., Magalhaes, L.P.: Simulating crowds based on a space colonization algorithm. Comp. Graph. 36(2), 7079 (2012)

    Google Scholar 

  30. Favorskaya, M., Zotin, A., Chunina, A.: Procedural modeling of broad-leaved trees under weather conditions in 3D virtual reality. In: Tsihrintzis, G.A., Virvou, M., Jain, L.C., Howlett, R.J. (eds.) Intelligent Interactive Multimedia Systems and Services in Smart Innovation, Systems and Technologies, p. 5159. Springer, Berlin (2011)

    Google Scholar 

  31. Perlin, K.: An image synthesizer. ACM SIGGRAPH 19(3), 287296 (1985)

    Google Scholar 

  32. Singh, P.A., Zhao, N., Chen, S.C., Zhang, K.: Tree animation for a 3D interactive visualization system for hurricane impacts. In: IEEE International Conference on Multimeia and Expo, ICME, p. 598601 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Favorskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Favorskaya, M., Tkacheva, A. (2016). Wind Rendering in 3D Modeling Landscape Scenes. In: Tweedale, J., Neves-Silva, R., Jain, L., Phillips-Wren, G., Watada, J., Howlett, R. (eds) Intelligent Decision Technology Support in Practice. Smart Innovation, Systems and Technologies, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-21209-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21209-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21208-1

  • Online ISBN: 978-3-319-21209-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics