Skip to main content

The DR in Accumulation and Inversion Layers of Non-parabolic Semiconductors Under Magnetic Quantization

  • Chapter
  • First Online:
Dispersion Relations in Heavily-Doped Nanostructures

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 265))

  • 536 Accesses

Abstract

This chapter explores the DR in inversion and accumulation layers of nonlinear optical semiconductors based on a newly formulated electron dispersion relation considering all types of anisotropies of the energy band spectrum within the framework of k.p formalism. We have also investigated the DRs in inversion and accumulation layers of III–V, II–VI, IV–VI, stressed Kane type semiconductors and Ge, respectively. The DOS functions for all the materials in this case are series of non-uniformly distributed Dirac’s Delta functions at specified quantized points in the respective energy axis. The spacing between the consecutive Delta functions are functions of energy band constants and quantization of the wave vector space of a particular material. The DOS function needs two summations namely one summation over the Landau quantum number and the other one is due to formation of such layers.It may be noted that the energy levels in inversion and accumulation layers of various materials lead to the discrete energy levels, somewhat like atomic energy levels, which produce very large changes. This follows from the inherent nature of the quantum confinement of the carrier gas dealt with here. In the present case, there remain no free carrier states in between any two allowed sets of totally quantized levels in this case unlike that found for QWs, NWs and QDs where the quantum confinements are 1D, 2D and 3D respectively. Consequently, the crossing of the Fermi level by the totally quantized levels in this case would have much greater impact on the redistribution of the carriers among the allowed levels, as compared to that found for QWs, NWs and QDs respectively. It is the band structure which changes in a fundamental way and consequently all the physical properties of all the electronic materials changes radically leading to new physical concepts. Section 12.4 contains 12 open research problems, which form the integral part of this chapter.

Blessed are those who can give without remembering and take without forgetting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Ando, H. Fowler, F. Stern, Rev. Mod. Phys. 54, 437 (1982)

    Article  ADS  Google Scholar 

  2. J.J. Quinn, P.J. Styles (eds.), Electronic Properties of Quasi Two Dimensional Systems (North Holland, Amsterdam, 1976)

    Google Scholar 

  3. G.A. Antcliffe, R.T. Bate, R.A. Reynolds, in Proceedings of the International Conference, Physics of Semi-metals and Narrow-Gap semiconductors, ed. by D.L. Carter, R.T. Bate (Pergamon Press, Oxford, 1971), p. 499

    Google Scholar 

  4. Z.A. Weinberg, Sol. Stat. Electron. 20, 11 (1977)

    Article  ADS  Google Scholar 

  5. G. Paasch, T. Fiedler, M. Kolar, I. Bartos, Phys. Stat. Sol. (b) 118, 641 (1983)

    Article  ADS  Google Scholar 

  6. S. Lamari, Phys. Rev. B 64, 245340 (2001)

    Article  ADS  Google Scholar 

  7. T. Matsuyama, R. Kürsten, C. Meißner, U. Merkt, Phys. Rev. B 61, 15588 (2000)

    Article  ADS  Google Scholar 

  8. P.V. Santos, M. Cardona, Phys. Rev. Lett. 72, 432 (1994)

    Article  ADS  Google Scholar 

  9. L. Bu, Y. Zhang, B.A. Mason, R.E. Doezema, J.A. Slinkman, Phys. Rev. B 45, 11336 (1992)

    Article  ADS  Google Scholar 

  10. P.D. Dresselhaus, C.M. Papavassiliou, R.G. Wheeler, R.N. Sacks, Phys. Rev. Lett. 68, 106 (1992)

    Article  ADS  Google Scholar 

  11. U. Kunze, Phys. Rev. B 41, 1707 (1990)

    Article  ADS  Google Scholar 

  12. E. Yamaguchi, Phys. Rev. B 32, 5280 (1985)

    Article  ADS  Google Scholar 

  13. Th. Lindner, G. Paasch, J. Appl. Phys. 102, 054514 (2007)

    Article  ADS  Google Scholar 

  14. S. Lamari, J. Appl. Phys. 91, 1698 (2002)

    Article  ADS  Google Scholar 

  15. K.P. Ghatak, M. Mondal, J. Appl. Phys. 70, 299 (1991)

    Article  ADS  Google Scholar 

  16. K.P. Ghatak, S.N. Biswas, J. Vac. Sci. Tech. 7B, 104 (1989)

    Article  Google Scholar 

  17. B. Mitra, K.P. Ghatak, Sol. State Electron. 32, 177 (1989)

    Article  ADS  Google Scholar 

  18. K.P. Ghatak, M. Mondal, J. Appl. Phys. 62, 922 (1987)

    Article  ADS  Google Scholar 

  19. M. Mondal, K.P. Ghatak, J. Magnet. Mag. Mat., 62, 115 (1986); M. Mondal, K.P. Ghatak, Phys. Script. 31, 613 (1985)

    Google Scholar 

  20. K.P. Ghatak, M. Mondal, Z. fur Physik B 64, 223 (1986); K.P. Ghatak, S.N. Biswas, Sol. State Electron. 37, 1437 (1994); D.R. Choudhury, A.K. Chowdhury, K.P. Ghatak, A.N. Chakravarti, Phys. Stat. Sol. (b) 98, (K141) (1980); A.N. Chakravarti, A.K. Chowdhury, K.P. Ghatak, Phys. Stat. Sol. (a) 63, K97 (1981); M. Mondal, K.P. Ghatak, Acta Phys. Polon. A 67, 983 (1985); M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 128, K21 (1985); M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (a) 93, 377 (1986); K.P. Ghatak, M. Mondal, Phys. Stat. Sol. (b) 135, 819 (1986); M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 139, 185 (1987); K.P. Ghatak, N. Chattopadhyay, S.N. Biswas, OE/Fibers’ 87, 203 (1987); K.P. Ghatak, N. Chatterjee, M. Mondal, Phys. Stat. Sol. (b) 139, K25 (1987); K.P. Ghatak, M. Mondal, Phys. Stat. Sol. (b) 148, 645 (1988); K.P. Ghatak, A. Ghosal, Phys. Stat. Sol. (b) 151, K135 (1989); K.P. Ghatak, N. Chattopadhyay, M. Mondal, Appl. Phys. A 48, 365 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamakhya Prasad Ghatak .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ghatak, K. (2016). The DR in Accumulation and Inversion Layers of Non-parabolic Semiconductors Under Magnetic Quantization. In: Dispersion Relations in Heavily-Doped Nanostructures. Springer Tracts in Modern Physics, vol 265. Springer, Cham. https://doi.org/10.1007/978-3-319-21000-1_12

Download citation

Publish with us

Policies and ethics