Skip to main content

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 87))

Abstract

Chapter 1 gave, in the framework of the general theory of optimal transportation based on duality methods, an existence result for the optimal transport map when the cost is of the form \(c(x,y) = \vert x - y\vert ^{p}\), for \(p \in ]1,+\infty [\). We look in this chapter at the two limit cases p = 1 and \(p = \infty \), which require additional techniques. We prove existence of an optimal map under absolutely continuous assumptions on the source measure. Then, the discussion section will go into two different directions: on the one hand the L 1 and \(L^{\infty }\) cases introduced and motivated the study of convex costs which could be non strictly-convex or infinite-valued somewhere; on the other hand one could wonder what is the situation for p < 1, i.e. for costs which are concave increasing functions of the distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Measurability could be proven, either by restricting to a \(\sigma\)-compact set Γ or by considering the disintegrations μ s and ν s and using the fact that, on each s, T is the monotone map sending μ s onto ν s (and hence it inherits some measurability properties of the dependence of μ s and ν s w.r.t. s, which are guaranteed by abstract disintegration theorems).

  2. 2.

    Note that the construction is essentially the same as in the example provided in [199], for a different goal. The regularity degree is slightly different, and we decided to handle by hands “vertical” Lipschitz curves in order to make a self-contained presentation.

  3. 3.

    We mean here costs which are concave functions of the distance | xy | , not of the displacement xy, as instead we considered in Remark 2.12.

  4. 4.

    We will not explicitly state it every time, but this also implies that is strictly increasing.

References

  1. L. Ambrosio, Lecture notes on optimal transport problems, in Mathematical Aspects of Evolving Interfaces. Lecture Notes in Mathematics (1812) (Springer, New York, 2003), pp. 1–52

    Google Scholar 

  2. L. Ambrosio, A. Pratelli, Existence and stability results in the L 1 theory of optimal transportation, in Optimal Transportation and Applications, ed. by L.A. Caffarelli, S. Salsa. Lecture Notes in Mathematics (CIME Series, Martina Franca, 2001) 1813 (2003), Springer Berlin Heidelberg, pp. 123–160

    Google Scholar 

  3. L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems (Oxford University Press, Oxford, 2000)

    MATH  Google Scholar 

  4. L. Ambrosio, B. Kirchheim, A. Pratelli, Existence of optimal transport maps for crystalline norms, Duke Math. J. 125, 207–241 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Balka, Y. Peres, Restrictions of Brownian motion, preprint. C. R. Math. Acad. Sci. Paris 352(12), 1057–1061 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Bardelloni, S. Bianchini, The decomposition of optimal transportation problems with convex cost. Preprint available at arxiv.org/pdf/1409.0515

  7. J. Bertrand, M. Puel, The optimal mass transport problem for relativistic costs. Calc. Var. PDE 46(1–2), 353–374 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Braides, Γ-Convergence for Beginners (Oxford University Press, Oxford, 2002)

    Book  MATH  Google Scholar 

  9. L. Caravenna, A proof of Sudakov theorem with strictly convex norms. Math. Z. 268, 371–407 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. L. Caravenna, S. Daneri, The disintegration of the Lebesgue measure on the faces of a convex function. J. Funct. Anal. 258(11), 3604–3661 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. G. Carlier, L. De Pascale, F. Santambrogio, A strategy for non-strictly convex transport costs and the example of | | xy | | p in \(\mathbb{R}^{2}\). Commun. Math. Sci. 8(4), 931–941 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. T. Champion, L. De Pascale, The Monge problem for strictly convex norms in \(\mathbb{R}^{d}\). J. Eur. Math. Soc. 12(6), 1355–1369 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. T. Champion, L. De Pascale, The Monge problem in \(\mathbb{R}^{d}\). Duke Math. J. 157(3), 551–572 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. T. Champion, L. De Pascale, On the twist condition and c-monotone transport plans. Discr. Contin. Dyn. Syst. 34(4), 1339–1353 (2014)

    MATH  Google Scholar 

  15. T. Champion, L. De Pascale, P. Juutinen, The -Wasserstein distance: local solutions and existence of optimal transport maps. SIAM J. Math. Ann. 40(1), 1–20 (2008)

    Article  MATH  Google Scholar 

  16. P. Chen, F. Jiang, X.-P. Yang, Two dimensional optimal transportation for a distance cost with a convex constraint. ESAIM: COCV 19(4), 1064–1075 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. P. Chen, F. Jiang, X.-P. Yang, Optimal transportation in \(\mathbb{R}^{d}\) for a distance cost with convex constraint. Zeitschrift fuer Angewandte Mathematik und Physik, 66(3), 587–606 (2015)

    Article  MathSciNet  Google Scholar 

  18. J. Delon, J. Salomon, A. Sobolevskii, Local matching indicators for transport problems with concave costs. SIAM J. Discr. Math. 26(2), 801–827 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics (CRC, Boca Raton, 1992)

    Google Scholar 

  20. H. Federer, Geometric Measure Theory. Classics in Mathematics (Springer, New York, 1996 (reprint of the 1st edn. Berlin, Heidelberg, New York 1969 edition)

    Google Scholar 

  21. W. Gangbo, R. McCann, The geometry of optimal transportation. Acta Math. 177, 113–161 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. C. Jimenez, F. Santambrogio, Optimal transportation in the quadratic case with a convex constraint. J. Math. Pures Appl. 98(1), 103–113 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. N. Juillet, On displacement interpolation of measures involved in Brenier’s Theorem. Proc. Am. Math. Soc. 139(10), 3623–3632 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Q.R. Li, F. Santambrogio, X.J. Wang, Regularity in Monge’s mass transfer problem. J. Math. Pures Appl. 102(6), 1015–1040 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  25. J. Malý, L. Zajíček, Approximate differentiation: Jarník points. Fund. Math. 140(1), 87–97 (1991)

    MATH  MathSciNet  Google Scholar 

  26. R.J. McCann, Exact solutions to the transportation problem on the line. Proc. R. Soc. Lond. Ser. A 455, 1341–1380 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. P. Pegon, D. Piazzoli, F. Santambrogio, Full characterization of optimal transport plans for concave costs. Discr. Contin. Dyn. Syst. – Series A (DCDS-A) 35(12), 6113–6132

    Google Scholar 

  28. F. Santambrogio, Absolute continuity and summability of transport densities: simpler proofs and new estimates. Calc. Var. Par. Differ. Equat. 36(3), 343–354 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. V.N. Sudakov, Geometric problems in the theory of infinite-dimensional probability distributions. Cover to cover translation of Trudy Mat. Inst. Steklov 141 (1976). Proc. Steklov Inst. Math. 2(i–v), 1–178 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Santambrogio, F. (2015). L 1 and L theory. In: Optimal Transport for Applied Mathematicians. Progress in Nonlinear Differential Equations and Their Applications, vol 87. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-20828-2_3

Download citation

Publish with us

Policies and ethics