Skip to main content

Part of the book series: Universitext ((UTX))

  • 1626 Accesses

Abstract

In Chapter 3 the focus is on the steady-state workload Q. For spectrally positive input this is done by explicitly establishing its Laplace transform (the generalized Pollaczek–Khintchine formula). The spectrally negative case can be dealt with explicitly, resulting in an exponentially distributed stationary workload. To deal with the case that jumps in both directions are allowed (i.e. the spectrally two-sided case), we provide a brief introduction to Wiener–Hopf theory, leading to an expression for the transform of Q albeit in a rather implicit form. We conclude this chapter by presenting (semi-) explicit results for two specific classes of spectrally two-sided processes, that is, the class in which the jumps have a phase-type distribution, and the class of meromorphic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abate, J., Whitt, W.: Numerical inversion of Laplace transforms of probability distributions. ORSA J. Comput. 7, 36–43 (1995)

    Article  MATH  Google Scholar 

  2. Asmussen, S.: Applied Probability and Queues, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  3. Asmussen, S.: Lévy processes, phase-type distributions and martingales. Stoch. Mod. 30, 443–468 (2014)

    Article  MathSciNet  Google Scholar 

  4. Asmussen, S., Avram, F., Pistorius, M.: Russian and American put options under exponential phase-type Lévy models. Stoch. Proc. Appl. 109, 79–111 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Asmussen, S., Nerman, O., Olsson, M.: Fitting phase-type distributions via the EM algorithm. Scand. J. Stat. 23, 419–441 (1996)

    MATH  Google Scholar 

  6. Asmussen, S., Rosiński, J.: Approximations of small jumps of Lévy processes with a view towards simulation. J. Appl. Probab. 38, 482–493 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  8. D’Auria, B., Ivanovs, J., Kella, O., Mandjes, M.: First passage process of a Markov additive process, with applications to reflection problems. J. Appl. Probab. 47, 1048–1057 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. den Iseger, P.: Numerical transform inversion using Gaussian quadrature. Probab. Eng. Inf. Sci. 20, 1–44 (2006)

    MATH  Google Scholar 

  10. Feldmann, A., Whitt, W.: Fitting mixtures of exponentials to long-tail distributions to analyze network performance models. Perform. Eval. 31, 245–279 (1998)

    Article  Google Scholar 

  11. Furrer, H.: Risk Theory and Heavy-Tailed Lévy Processes. Ph.D. thesis, Eidgenössische Technische Hochschule, Zürich (1997). http://e-collection.ethbib.ethz.ch/eserv/eth:22556/eth-22556-02.pdf.

  12. Greenwood, P., Pitman, J.: Fluctuation identities for Lévy processes and splitting at the maximum. Adv. Appl. Probab. 12, 839–902 (1979)

    Google Scholar 

  13. Horváth, A., Telek, M.: Approximating heavy tailed behavior with phase type distributions. In: Proceedings of 3rd International Conference on Matrix-Analytic Methods in Stochastic Models, Leuven (2000)

    Google Scholar 

  14. Ivanovs, J., Boxma, O., Mandjes, M.: Singularities of the generator of a Markov additive process with one-sided jumps. Stoch. Proc. Appl. 120, 1776–1794 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jeannin, M., Pistorius, M.: A transform approach to compute prices and Greeks of barrier options driven by a class of Lévy processes. Quant. Financ. 10, 629–644 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (1991)

    MATH  Google Scholar 

  17. Kella, O., Whitt, W.: Useful martingales for stochastic storage processes with Lévy input. J. Appl. Probab. 33, 1169–1180 (1992)

    Article  MathSciNet  Google Scholar 

  18. Khintchine, A.: Matematicheskaya teoriya statsionarnoi ocheredi. Mat. Sb. 30, 73–84 (1932)

    Google Scholar 

  19. Kosiński, K., Boxma, O., Zwart, B.: Convergence of the all-time supremum of a Lévy process in the heavy-traffic regime. Queueing Syst. 67, 295–304 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kuznetsov, A.: Wiener–Hopf factorization for a family of Lévy processes related to theta functions. J. Appl. Probab. 47, 1023–1033 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kuznetsov, A., Kyprianou, A., Pardo, J.: Meromorphic Lévy processes and their fluctuation identities. Ann. Appl. Probab. 22, 1101–1135 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kyprianou, A.: Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin (2006)

    MATH  Google Scholar 

  23. Kyprianou, A.: The Wiener–Hopf decomposition. In: Cont, R. (ed.) Encyclopedia of Quantitative Finance. Wiley, Chichester (2010)

    Google Scholar 

  24. Lewis, A., Mordecki, E.: Wiener–Hopf factorization for Lévy processes having negative jumps with rational transforms. J. Appl. Probab. 45, 118–134 (2005)

    Article  MathSciNet  Google Scholar 

  25. Lewis, A., Mordecki, E.: Wiener–Hopf factorization for Lévy processes having positive jumps with rational transforms. J. Appl. Probab. 45, 118–134 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pollaczek, F.: Über eine Aufgabe der Wahrscheinlichkeitsrechnung. Math. Zeit. 32, 64–100 and 729–850 (1930)

    Google Scholar 

  27. Rogers, L.: Fluid models in queueing theory and Wiener–Hopf factorisation of Markov chains. Ann. Appl. Probab. 4, 390–413 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  29. Szczotka, W., Woyczyński, W.: Distributions of suprema of Lévy processes via the heavy-traffic invariance principle. Probab. Math. Stat. 23, 251–272 (2003)

    MATH  Google Scholar 

  30. Williams, D.: Probability with Martingales. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  31. Zolotarev, V.: The first passage time of a level and the behaviour at infinity for a class of processes with independent increments. Theor. Probab. Appl. 9, 653–661 (1964)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dębicki, K., Mandjes, M. (2015). Steady-State Workload. In: Queues and Lévy Fluctuation Theory. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-20693-6_3

Download citation

Publish with us

Policies and ethics