Skip to main content

Applications in Communication Networks

  • Chapter
Queues and Lévy Fluctuation Theory

Part of the book series: Universitext ((UTX))

  • 1613 Accesses

Abstract

In this chapter the use of Lévy-driven queues in operations research (typically related to communication networks) is pointed out. In particular, it is argued under what conditions and scaling limits, Lévy processes form a natural candidate to model network traffic. These limits involve both aggregation over time (so-called horizontal aggregation) and over the number of network users (vertical aggregation). As a result, the performance of the network nodes can be evaluated by studying the corresponding Lévy-driven queues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anick, D., Mitra, D., Sondhi, M.: Stochastic theory of a data-handling system with multiple sources. Bell Syst. Tech. J. 61, 1871–1894 (1982)

    Article  MathSciNet  Google Scholar 

  2. Heath, D., Resnick, S., Samorodnitsky, G.: Heavy tails and long range dependence in on/off processes and associated fluid models. Math. Oper. Res. 23, 145–165 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kosiński, K., Boxma, O., Zwart, B.: Convergence of the all-time supremum of a Lévy process in the heavy-traffic regime. Queueing Syst. 67, 295–304 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Mikosch, T., Resnick, S., Rootzé, H., Stegeman, A.: Is network traffic approximated by stable Lévy motion or fractional Brownian motion? Ann. Appl. Probab. 12, 23–68 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mikosch, T., Samorodnitsky, G.: Scaling limits for cumulative input processes. Math. Oper. Res. 32, 890–919 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Resnick, S., van den Berg, E.: Weak convergence of high-speed network traffic models. J. Appl. Probab. 37, 575–597 (2000)

    Article  MathSciNet  Google Scholar 

  7. Szczotka, W., Woyczyński, W.: Distributions of suprema of Lévy processes via the heavy-traffic invariance principle. Probab. Math. Stat. 23, 251–272 (2003)

    MATH  Google Scholar 

  8. Taqqu, M., Willinge, W., Sherman, R.: Proof of a fundamental result in self-similar traffic modeling. Comput. Commun. Rev. 27, 5–23 (1997)

    Article  Google Scholar 

  9. Whitt, W.: The reflection map is Lipschitz with appropriate Skorokhod M-metrics. AT&T Labs (1999, preprint)

    Google Scholar 

  10. Whitt, W.: Limits for cumulative input processes to queues. Probab. Eng. Inf. Sci. 14, 123–150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Whitt, W.: Stochastic-Process Limits. Springer, New York (2002)

    MATH  Google Scholar 

  12. Zwart, B., Borst, S., Dębicki, K.: Subexponential asymptotics of hybrid fluid and ruin models. Ann. Appl. Probab. 15, 500–517 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dębicki, K., Mandjes, M. (2015). Applications in Communication Networks. In: Queues and Lévy Fluctuation Theory. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-20693-6_14

Download citation

Publish with us

Policies and ethics